MIMO-OFDM channel estimation using distributed compressed sensing

B. Priyanka, K. Rajeswari, S. Thiruvengadam
{"title":"MIMO-OFDM channel estimation using distributed compressed sensing","authors":"B. Priyanka, K. Rajeswari, S. Thiruvengadam","doi":"10.1109/ICCIC.2014.7238317","DOIUrl":null,"url":null,"abstract":"This paper proposes a method of sparse channel estimation using compressed sensing for MIMO-OFDM system. The channel estimation is formulated as a sparse recovery problem because of the maximum delay spread in the high data rate OFDM communication systems. The proposed Distributed Compressed Sensing (DCS) algorithm for channel estimation in MIMO-OFDM system exploits the join sparsity of the MIMO channel. It takes less number of iterations in solving the channel estimation problem and runs much faster than the existing Compressive Sampling Matching Pursuit (CoSaMP). Simulation results demonstrate the validity of the algorithm. For the MIMO channels of unknown sparse degrees, the proposed DCS algorithm gives good channel estimation performance with less number of subcarriers reducing the complexity of the system.","PeriodicalId":187874,"journal":{"name":"2014 IEEE International Conference on Computational Intelligence and Computing Research","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Computational Intelligence and Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIC.2014.7238317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method of sparse channel estimation using compressed sensing for MIMO-OFDM system. The channel estimation is formulated as a sparse recovery problem because of the maximum delay spread in the high data rate OFDM communication systems. The proposed Distributed Compressed Sensing (DCS) algorithm for channel estimation in MIMO-OFDM system exploits the join sparsity of the MIMO channel. It takes less number of iterations in solving the channel estimation problem and runs much faster than the existing Compressive Sampling Matching Pursuit (CoSaMP). Simulation results demonstrate the validity of the algorithm. For the MIMO channels of unknown sparse degrees, the proposed DCS algorithm gives good channel estimation performance with less number of subcarriers reducing the complexity of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分布式压缩感知的MIMO-OFDM信道估计
提出了一种基于压缩感知的MIMO-OFDM系统稀疏信道估计方法。在高数据速率OFDM通信系统中,由于最大的时延扩展,信道估计被表述为一个稀疏恢复问题。利用MIMO- ofdm信道的连接稀疏性,提出了一种用于MIMO- ofdm信道估计的分布式压缩感知(DCS)算法。与现有的压缩采样匹配追踪(CoSaMP)算法相比,该算法在解决信道估计问题时迭代次数少,运行速度快。仿真结果验证了该算法的有效性。对于稀疏度未知的MIMO信道,DCS算法具有较好的信道估计性能,且子载波数量较少,降低了系统的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic generation control of three area hydro-thermal power systems with electric and mechanical governor Analysis of AQM router of network supporting multiple TCP flows Data analytic engineering and its application in earthquake engineering: An overview Comparative analysis of digital image stabilization by using empirical mode decomposition methods Analytical approach towards packet drop attacks in mobile ad-hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1