Fused Convolutional Neural Network for White Blood Cell Image Classification

Partha Pratim Banik, Rappy Saha, Ki-Doo Kim
{"title":"Fused Convolutional Neural Network for White Blood Cell Image Classification","authors":"Partha Pratim Banik, Rappy Saha, Ki-Doo Kim","doi":"10.1109/ICAIIC.2019.8669049","DOIUrl":null,"url":null,"abstract":"Blood cell image classification is an important part for medical diagnosis system. In this paper, we propose a fused convolutional neural network (CNN) model to classify the images of white blood cell (WBC). We use five convolutional layer, three max-pooling layer and a fully connected network with single hidden layer. We fuse the feature maps of two convolutional layers by using the operation of max-pooling to give input to the fully connected neural network layer. We compare the result of our model accuracy and computational time with CNN-recurrent neural network (RNN) combined model. We also show that our model trains faster than CNN-RNN model.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Blood cell image classification is an important part for medical diagnosis system. In this paper, we propose a fused convolutional neural network (CNN) model to classify the images of white blood cell (WBC). We use five convolutional layer, three max-pooling layer and a fully connected network with single hidden layer. We fuse the feature maps of two convolutional layers by using the operation of max-pooling to give input to the fully connected neural network layer. We compare the result of our model accuracy and computational time with CNN-recurrent neural network (RNN) combined model. We also show that our model trains faster than CNN-RNN model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
融合卷积神经网络用于白细胞图像分类
血细胞图像分类是医学诊断系统的重要组成部分。本文提出了一种融合卷积神经网络(CNN)模型对白细胞(WBC)图像进行分类。我们使用了5个卷积层,3个最大池化层和一个具有单个隐藏层的全连接网络。我们使用最大池化操作将两个卷积层的特征映射融合到全连接的神经网络层中。我们将模型的精度和计算时间与cnn -递归神经网络(RNN)组合模型进行了比较。我们还表明,我们的模型训练速度比CNN-RNN模型快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Prices Prediction using the Title of Newspaper Articles with Korean Natural Language Processing Deep learning based decomposition of brain networks Simulation on Delay of Several Random Access Schemes A Machine-Learning-Based Channel Assignment Algorithm for IoT The Properties of mode prediction using mean root error for regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1