{"title":"Fused Convolutional Neural Network for White Blood Cell Image Classification","authors":"Partha Pratim Banik, Rappy Saha, Ki-Doo Kim","doi":"10.1109/ICAIIC.2019.8669049","DOIUrl":null,"url":null,"abstract":"Blood cell image classification is an important part for medical diagnosis system. In this paper, we propose a fused convolutional neural network (CNN) model to classify the images of white blood cell (WBC). We use five convolutional layer, three max-pooling layer and a fully connected network with single hidden layer. We fuse the feature maps of two convolutional layers by using the operation of max-pooling to give input to the fully connected neural network layer. We compare the result of our model accuracy and computational time with CNN-recurrent neural network (RNN) combined model. We also show that our model trains faster than CNN-RNN model.","PeriodicalId":273383,"journal":{"name":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC.2019.8669049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Blood cell image classification is an important part for medical diagnosis system. In this paper, we propose a fused convolutional neural network (CNN) model to classify the images of white blood cell (WBC). We use five convolutional layer, three max-pooling layer and a fully connected network with single hidden layer. We fuse the feature maps of two convolutional layers by using the operation of max-pooling to give input to the fully connected neural network layer. We compare the result of our model accuracy and computational time with CNN-recurrent neural network (RNN) combined model. We also show that our model trains faster than CNN-RNN model.