Synthetic aperture radar image processing using cellular neural networks

S. Kent, O. Ucan, T. Ensari
{"title":"Synthetic aperture radar image processing using cellular neural networks","authors":"S. Kent, O. Ucan, T. Ensari","doi":"10.1109/RAST.2003.1303925","DOIUrl":null,"url":null,"abstract":"In this paper, Cellular Neural Networks (CNNs) have been applied to noisy Synthetic Aperture Radar (SAR) image to improve its performance and appearance. The image has been obtained from Erzurum, Turkey. Because of the importance of imaging quality and appearance for remote sensing applications, CNN has been applied to data for image processing applications that for noise filtering and edge detection. In training, Recurrent Perceptron Learning Algorithm (RPLA) is used as a learning algorithm. According to templates SAR-image has been tested and obtained satisfactory results.","PeriodicalId":272869,"journal":{"name":"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Recent Advances in Space Technologies, 2003. RAST '03. Proceedings of","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAST.2003.1303925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, Cellular Neural Networks (CNNs) have been applied to noisy Synthetic Aperture Radar (SAR) image to improve its performance and appearance. The image has been obtained from Erzurum, Turkey. Because of the importance of imaging quality and appearance for remote sensing applications, CNN has been applied to data for image processing applications that for noise filtering and edge detection. In training, Recurrent Perceptron Learning Algorithm (RPLA) is used as a learning algorithm. According to templates SAR-image has been tested and obtained satisfactory results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细胞神经网络的合成孔径雷达图像处理
本文将细胞神经网络(cnn)应用于噪声合成孔径雷达(SAR)图像,以改善其性能和外观。该图像来自土耳其埃尔祖鲁姆。由于成像质量和外观在遥感应用中的重要性,CNN已被应用于图像处理应用中的数据,如噪声滤波和边缘检测。在训练中,使用递归感知器学习算法(RPLA)作为学习算法。根据模板对sar图像进行了测试,取得了满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust time-optimal control for flexible structures by augmented dynamics Bering - the first deep space mission to map asteroidal diversity, origin and transportation Asteroid and NEA detection models On the relation between solar activity and seismicity Researches on the influence of vibration on the stability of fuel-water in flying apparatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1