Genetic Algorithms for Trajectory Tracking of Mobile Robot Based on PID Controller

A. Alouache, Qing-he Wu
{"title":"Genetic Algorithms for Trajectory Tracking of Mobile Robot Based on PID Controller","authors":"A. Alouache, Qing-he Wu","doi":"10.1109/ICCP.2018.8516587","DOIUrl":null,"url":null,"abstract":"this paper investigates trajectory tracking for an autonomous nonholonomic wheeled mobile robot with virtual robot as reference trajectory. The standard proportional integral derivative (PID) is used for regulating the velocity of the follower robot such that the tracking errors are minimized between the follower and the reference trajectory. However using the PID controller solely for trajectory tracking produces poor results in the presence of noise or external disturbances. Hence genetic algorithms (GA) is applied in this paper to improve the performance of the PID controller in terms of control precision and speed of convergence. Moreover, communication between the follower and the virtual robot may fail very often in practice due to many raisons such as noise or external disturbances. Therefore, GA is applied again to predict the reference trajectory in case of communication disturbance. The simulation results demonstrate the effectiveness of the proposed GA-PID controller compared with the PID controller.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"302 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

this paper investigates trajectory tracking for an autonomous nonholonomic wheeled mobile robot with virtual robot as reference trajectory. The standard proportional integral derivative (PID) is used for regulating the velocity of the follower robot such that the tracking errors are minimized between the follower and the reference trajectory. However using the PID controller solely for trajectory tracking produces poor results in the presence of noise or external disturbances. Hence genetic algorithms (GA) is applied in this paper to improve the performance of the PID controller in terms of control precision and speed of convergence. Moreover, communication between the follower and the virtual robot may fail very often in practice due to many raisons such as noise or external disturbances. Therefore, GA is applied again to predict the reference trajectory in case of communication disturbance. The simulation results demonstrate the effectiveness of the proposed GA-PID controller compared with the PID controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PID控制器的移动机器人轨迹跟踪遗传算法
研究了以虚拟机器人为参考轨迹的自主非完整轮式移动机器人的轨迹跟踪问题。采用标准比例积分导数(PID)来调节随动机器人的速度,使随动机器人与参考轨迹之间的跟踪误差最小。然而,在存在噪声或外部干扰的情况下,仅使用PID控制器进行轨迹跟踪会产生较差的结果。因此,本文采用遗传算法来提高PID控制器的控制精度和收敛速度。此外,在实际操作中,由于噪声或外界干扰等多种原因,follower与虚拟机器人之间的通信可能会经常失败。因此,再次应用遗传算法预测通信干扰情况下的参考轨迹。仿真结果表明,所提出的GA-PID控制器与PID控制器相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Deep Learning Approach For Pedestrian Segmentation In Infrared Images Real-Time Temporal Frequency Detection in FPGA Using Event-Based Vision Sensor Miniature Autonomous Vehicle Development on Raspberry Pi NEARBY Platform: Algorithm for Automated Asteroids Detection in Astronomical Images CoolCloudSim: Integrating Cooling System Models in CloudSim
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1