Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances

Leopoldo Catania, A. Billé
{"title":"Dynamic Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances","authors":"Leopoldo Catania, A. Billé","doi":"10.2139/ssrn.2756615","DOIUrl":null,"url":null,"abstract":"We propose a new class of models specifically tailored for spatio-temporal data analysis. To this end, we generalize the spatial autoregressive model with autoregressive and heteroskedastic disturbances, i.e. SARAR(1,1), by exploiting the recent advancements in Score Driven (SD) models typically used in time series econometrics. In particular, we allow for time-varying spatial autoregressive coefficients as well as time-varying regressor coefficients and cross-sectional standard deviations. We report an extensive Monte Carlo simulation study in order to investigate the finite sample properties of the Maximum Likelihood estimator for the new class of models as well as its flexibility in explaining several dynamic spatial dependence processes. The new proposed class of models are found to be economically preferred by rational investors through an application in portfolio optimization.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2756615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

We propose a new class of models specifically tailored for spatio-temporal data analysis. To this end, we generalize the spatial autoregressive model with autoregressive and heteroskedastic disturbances, i.e. SARAR(1,1), by exploiting the recent advancements in Score Driven (SD) models typically used in time series econometrics. In particular, we allow for time-varying spatial autoregressive coefficients as well as time-varying regressor coefficients and cross-sectional standard deviations. We report an extensive Monte Carlo simulation study in order to investigate the finite sample properties of the Maximum Likelihood estimator for the new class of models as well as its flexibility in explaining several dynamic spatial dependence processes. The new proposed class of models are found to be economically preferred by rational investors through an application in portfolio optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有自回归和异方差扰动的动态空间自回归模型
我们提出了一种专门为时空数据分析量身定制的新模型。为此,我们利用时间序列计量经济学中常用的分数驱动(SD)模型的最新进展,推广了具有自回归和异方差干扰的空间自回归模型,即SARAR(1,1)。特别是,我们允许时变空间自回归系数以及时变回归系数和横截面标准差。我们报告了一项广泛的蒙特卡罗模拟研究,以研究新一类模型的最大似然估计量的有限样本性质以及它在解释几个动态空间依赖过程中的灵活性。通过在投资组合优化中的应用,发现这类模型在经济上更受理性投资者的青睐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling Cycles in Climate Series: The Fractional Sinusoidal Waveform Process Three Liquid Assets Efficient Nonparametric Estimation of Generalized Autocovariances Partnership Dissolution with Cash-Constrained Agents Pre-selection in Cointegration-based Pairs Trading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1