Synergistic Detection of SMS Spam: Harnessing the Power of Hybrid Voting Technique

Lalitha. B, Siddardha. S, Ibrahim. M, Rao G Ramakoteswara, P. Srinivas
{"title":"Synergistic Detection of SMS Spam: Harnessing the Power of Hybrid Voting Technique","authors":"Lalitha. B, Siddardha. S, Ibrahim. M, Rao G Ramakoteswara, P. Srinivas","doi":"10.1109/ICECAA58104.2023.10212100","DOIUrl":null,"url":null,"abstract":"Due to the variety of spamming techniques used, detecting SMS spam is a difficult task. This research study suggests a novel approach to improving SMS spam detection accuracy by leveraging the power of hybrid voting techniques. This research aims to combine the outputs of various machine learning models. Experiment results on a publicly available dataset show that the proposed hybrid voting technique outperforms individual models, detecting SMS spam with a high accuracy of over 98%. This approach has a lot of potential for improving SMS spam detection and can be applied to other types of spam detection tasks in different domains.","PeriodicalId":114624,"journal":{"name":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA58104.2023.10212100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the variety of spamming techniques used, detecting SMS spam is a difficult task. This research study suggests a novel approach to improving SMS spam detection accuracy by leveraging the power of hybrid voting techniques. This research aims to combine the outputs of various machine learning models. Experiment results on a publicly available dataset show that the proposed hybrid voting technique outperforms individual models, detecting SMS spam with a high accuracy of over 98%. This approach has a lot of potential for improving SMS spam detection and can be applied to other types of spam detection tasks in different domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短信垃圾邮件的协同检测:利用混合投票技术的力量
由于使用的垃圾邮件技术多种多样,检测SMS垃圾邮件是一项艰巨的任务。本研究提出了一种利用混合投票技术提高SMS垃圾邮件检测准确性的新方法。本研究旨在结合各种机器学习模型的输出。在公开数据集上的实验结果表明,所提出的混合投票技术优于单个模型,检测短信垃圾邮件的准确率超过98%。这种方法在改进SMS垃圾邮件检测方面具有很大的潜力,并且可以应用于不同领域的其他类型的垃圾邮件检测任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning based Sentiment Analysis on Images A Comprehensive Analysis on Unconstraint Video Analysis Using Deep Learning Approaches An Intelligent Parking Lot Management System Based on Real-Time License Plate Recognition BLIP-NLP Model for Sentiment Analysis Botnet Attack Detection in IoT Networks using CNN and LSTM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1