A More Efficient Induction Machine based on Hill Climbing Local Search Optimization

R. Srimathi, P. Ponmurugan, A. Iqbal, K. V, M. Lakshmanan, E. S. Nadin
{"title":"A More Efficient Induction Machine based on Hill Climbing Local Search Optimization","authors":"R. Srimathi, P. Ponmurugan, A. Iqbal, K. V, M. Lakshmanan, E. S. Nadin","doi":"10.1109/PECCON55017.2022.9851011","DOIUrl":null,"url":null,"abstract":"A multi-objective search optimization technique is utilized to improve the efficiency of the induction machine design. This technique is referred to as Random restart local search optimization or Hill Climbing based local search optimization (HC aLSO). To create an induction machine with a high efficiency of operation, the preceding technique utilizes repeated explo-rations of the problem space to generate the induction machine data. To build the induction motor, this suggested technique utilizes objective functions from the discrete and continuous hill climbing processes. The new HC-LSO technique is compared to two current algorithms for multi-objective design optimization of induction motors, namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO). The suggested HC a LSO technique and other existing techniques are compared using MATLAB simulations. As a result, the suggested technique's performance has an effect on induction machine parameters such as rotor current, power factor, and efficiency.","PeriodicalId":129147,"journal":{"name":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECCON55017.2022.9851011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A multi-objective search optimization technique is utilized to improve the efficiency of the induction machine design. This technique is referred to as Random restart local search optimization or Hill Climbing based local search optimization (HC aLSO). To create an induction machine with a high efficiency of operation, the preceding technique utilizes repeated explo-rations of the problem space to generate the induction machine data. To build the induction motor, this suggested technique utilizes objective functions from the discrete and continuous hill climbing processes. The new HC-LSO technique is compared to two current algorithms for multi-objective design optimization of induction motors, namely the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Hybrid Genetic Algorithm and Particle Swarm Optimization (HGAPSO). The suggested HC a LSO technique and other existing techniques are compared using MATLAB simulations. As a result, the suggested technique's performance has an effect on induction machine parameters such as rotor current, power factor, and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于爬坡局部搜索优化的高效感应电机
采用多目标搜索优化技术,提高了感应电机的设计效率。这种技术被称为随机重启局部搜索优化或基于爬山的局部搜索优化(HC aLSO)。为了创建一个运行效率高的感应电机,上述技术利用对问题空间的重复探索来生成感应电机数据。为了构建感应电机,这种建议的技术利用了离散和连续爬坡过程的目标函数。将HC-LSO算法与当前两种异步电机多目标设计优化算法即非支配排序遗传算法(NSGA-II)和混合遗传算法与粒子群优化算法(HGAPSO)进行了比较。通过MATLAB仿真,比较了所提出的HC - LSO技术和其他现有技术。因此,该技术的性能对感应电机的转子电流、功率因数和效率等参数都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Storage System with Artificial Neural Networks using PI Hybrid Controllers Review and Analysis of Techniques to Mitigate Sub Synchronous Resonance using FACTS Devices 12-Pulse Power Inverter with Fixed Switching Angle for Grid-connected PV Array TWO-STAGE VOLTAGE REGULATOR FED VOLTAGE CONTROL USING PIC MICRO CONTROLLER Performance Assessment of Grey Wolf Technique for AGC of Multi-source Intertied System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1