Iterated Combination Forecast and Treasury Bond Predictability

Hai Lin, Wenjie Liu, Chunchi Wu, Guofu Zhou
{"title":"Iterated Combination Forecast and Treasury Bond Predictability","authors":"Hai Lin, Wenjie Liu, Chunchi Wu, Guofu Zhou","doi":"10.2139/ssrn.3220751","DOIUrl":null,"url":null,"abstract":"Using a large number of predictors and based on an extended iterated combination approach of Lin, Wu, and Zhou (2017), we document both statistical and economic significance of Treasury bond return predictability. Macroeconomic and aggregate liquidity variables contain predictive information for bond returns and combining them with term structure and Ludvigson-Ng macro factors significantly improve out-of-sample forecast gains. We also find that variance forecasts can be substantially improved with our approach, yielding significant gains in asset allocation decision. Our results show that information from a large number of predictors collectively contributes to the time-varying Treasury bond premia, and this is robust to different return measures, horizons and sample periods.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"434-435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3220751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Using a large number of predictors and based on an extended iterated combination approach of Lin, Wu, and Zhou (2017), we document both statistical and economic significance of Treasury bond return predictability. Macroeconomic and aggregate liquidity variables contain predictive information for bond returns and combining them with term structure and Ludvigson-Ng macro factors significantly improve out-of-sample forecast gains. We also find that variance forecasts can be substantially improved with our approach, yielding significant gains in asset allocation decision. Our results show that information from a large number of predictors collectively contributes to the time-varying Treasury bond premia, and this is robust to different return measures, horizons and sample periods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迭代组合预测与国债可预测性
使用大量预测因子,并基于Lin、Wu和Zhou(2017)的扩展迭代组合方法,我们证明了国债收益可预测性的统计和经济意义。宏观经济和总流动性变量包含债券收益的预测信息,将它们与期限结构和Ludvigson-Ng宏观因素结合起来可以显著提高样本外预测收益。我们还发现,方差预测可以通过我们的方法得到实质性的改进,在资产配置决策中产生显著的收益。我们的研究结果表明,来自大量预测因子的信息共同促成了时变的国债溢价,并且这对于不同的回报措施,视野和样本周期都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1