A direct memetic approach to the solution of Multi-Objective Optimal Control Problems

M. Vasile, Lorenzo A. Ricciardi
{"title":"A direct memetic approach to the solution of Multi-Objective Optimal Control Problems","authors":"M. Vasile, Lorenzo A. Ricciardi","doi":"10.1109/SSCI.2016.7850103","DOIUrl":null,"url":null,"abstract":"This paper proposes a memetic direct transcription algorithm to solve Multi-Objective Optimal Control Problems (MOOCP). The MOOCP is first transcribed into a Non-linear Programming Problem (NLP) with Direct Finite Elements in Time (DFET) and then solved with a particular formulation of the Multi Agent Collaborative Search (MACS) framework. Multi Agent Collaborative Search is a memetic algorithm in which a population of agents combines local search heuristics, exploring the neighbourhood of each agent, with social actions exchanging information among agents. A collection of all Pareto optimal solutions is maintained in an archive that evolves towards the Pareto set. In the approach proposed in this paper, individualistic actions run a local search, from random points within the neighbourhood of each agent, solving a normalised Pascoletti-Serafini scalarisation of the multi-objective NLP problem. Social actions, instead, solve a bi-level problem in which the lower level handles only the constraint equations while the upper level handles only the objective functions. The proposed approach is tested on the multi-objective extensions of two well-known optimal control problems: the Goddard Rocket problem, and the maximum energy orbit rise problem.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper proposes a memetic direct transcription algorithm to solve Multi-Objective Optimal Control Problems (MOOCP). The MOOCP is first transcribed into a Non-linear Programming Problem (NLP) with Direct Finite Elements in Time (DFET) and then solved with a particular formulation of the Multi Agent Collaborative Search (MACS) framework. Multi Agent Collaborative Search is a memetic algorithm in which a population of agents combines local search heuristics, exploring the neighbourhood of each agent, with social actions exchanging information among agents. A collection of all Pareto optimal solutions is maintained in an archive that evolves towards the Pareto set. In the approach proposed in this paper, individualistic actions run a local search, from random points within the neighbourhood of each agent, solving a normalised Pascoletti-Serafini scalarisation of the multi-objective NLP problem. Social actions, instead, solve a bi-level problem in which the lower level handles only the constraint equations while the upper level handles only the objective functions. The proposed approach is tested on the multi-objective extensions of two well-known optimal control problems: the Goddard Rocket problem, and the maximum energy orbit rise problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标最优控制问题解的直接模因法
针对多目标最优控制问题(MOOCP),提出了一种模因直接转录算法。MOOCP首先被转化为具有直接时间有限元素(DFET)的非线性规划问题(NLP),然后用多智能体协作搜索(MACS)框架的特定公式进行求解。多智能体协同搜索是一种模因算法,其中一群智能体结合了局部搜索启发式,探索每个智能体的邻居,并在智能体之间进行社会行为交换信息。所有帕累托最优解的集合保存在一个向着帕累托集发展的存档中。在本文提出的方法中,个人主义行为从每个智能体附近的随机点运行局部搜索,解决多目标NLP问题的规范化Pascoletti-Serafini缩放。相反,社会行动解决了一个双层次问题,其中较低层次只处理约束方程,而较高层次只处理目标函数。对戈达德火箭问题和最大能量轨道上升问题这两个著名的最优控制问题的多目标扩展进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolutionary dynamic optimisation of airport security lane schedules Variable Neighbourhood Search: A case study for a highly-constrained workforce scheduling problem Local modes-based free-shape data partitioning A dynamic truck dispatching problem in marine container terminal Spaceplane trajectory optimisation with evolutionary-based initialisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1