L. Savastano, G. Maier, M. Martinelli, A. Pattavina
{"title":"Performance comparison of guided-wave architectures for space-division photonic switching","authors":"L. Savastano, G. Maier, M. Martinelli, A. Pattavina","doi":"10.1109/BROADNETS.2004.59","DOIUrl":null,"url":null,"abstract":"The paper presents and compares various unicast nonblocking architectures to be used into space-domain photonic switching networks. All the analyzed architectures have been evaluated and compared considering a possible physical implementation based on guided-wave structures realized with integrated optics technology. Some properties including number of switching elements required, blocking performance, number of waveguide crossovers, system attenuation, and signal-to-noise ratio are evaluated and analyzed. The main purpose of this work is to review the state-of-the-art of optical guided-wave space-switching architectures and to provide a relevant set of technical elements useful in the selection of architectures to be used in all-optical cross-connect implementation.","PeriodicalId":305639,"journal":{"name":"First International Conference on Broadband Networks","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Broadband Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BROADNETS.2004.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The paper presents and compares various unicast nonblocking architectures to be used into space-domain photonic switching networks. All the analyzed architectures have been evaluated and compared considering a possible physical implementation based on guided-wave structures realized with integrated optics technology. Some properties including number of switching elements required, blocking performance, number of waveguide crossovers, system attenuation, and signal-to-noise ratio are evaluated and analyzed. The main purpose of this work is to review the state-of-the-art of optical guided-wave space-switching architectures and to provide a relevant set of technical elements useful in the selection of architectures to be used in all-optical cross-connect implementation.