Adaptive Fitness Function for Evolutionary Algorithm and Its Applications

M. Majig, Masao Fukushima
{"title":"Adaptive Fitness Function for Evolutionary Algorithm and Its Applications","authors":"M. Majig, Masao Fukushima","doi":"10.1109/ICKS.2008.12","DOIUrl":null,"url":null,"abstract":"One of the popular methods of global optimization, the evolutionary algorithm (EA) is heuristic based and converges prematurely to a local-nonglobal solution sometimes. Our adaptive fitness function method, initially proposed for improving the validity of the evolutionary algorithm by avoiding this premature convergence, allows the evolutionary algorithm to search multiple, hopefully all, solutions of the problem. Every time the evolutionary search gets stuck around a solution, the proposed method transforms (or inflates) the fitness function around it so that the searching process can avoid coming back to this explored region in future search. Numerical results for some well known test problems of global optimization and mixed complementarity problems show that the method works very well in practice.","PeriodicalId":443068,"journal":{"name":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Informatics Education and Research for Knowledge-Circulating Society (icks 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKS.2008.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

One of the popular methods of global optimization, the evolutionary algorithm (EA) is heuristic based and converges prematurely to a local-nonglobal solution sometimes. Our adaptive fitness function method, initially proposed for improving the validity of the evolutionary algorithm by avoiding this premature convergence, allows the evolutionary algorithm to search multiple, hopefully all, solutions of the problem. Every time the evolutionary search gets stuck around a solution, the proposed method transforms (or inflates) the fitness function around it so that the searching process can avoid coming back to this explored region in future search. Numerical results for some well known test problems of global optimization and mixed complementarity problems show that the method works very well in practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
进化算法的自适应适应度函数及其应用
进化算法是一种基于启发式算法的全局优化方法,有时会过早收敛到局部-非全局解。我们的自适应适应度函数方法最初是为了避免这种过早收敛而提高进化算法的有效性而提出的,它允许进化算法搜索问题的多个(希望是所有)解。每当进化搜索卡在一个解附近时,所提出的方法就会变换(或膨胀)该解周围的适应度函数,从而使搜索过程在以后的搜索中可以避免回到该已探索的区域。对一些著名的全局优化问题和混合互补问题的数值计算结果表明,该方法在实际应用中具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Edaphology as a Basis for Field Informatics Researches Data Mining and Applied Linear Algebra Calendar for Everything: Browsing and Finding Cross-Media Personal Contents by Using Calendar Interface Virtual Reality Produced in the Brain Knowledge Exploratory in the Digitizing and Servicizing Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1