Trustworthy Adaptation with Few-Shot Learning for Hand Gesture Recognition

E. Rahimian, Soheil Zabihi, A. Asif, S. F. Atashzar, Arash Mohammadi
{"title":"Trustworthy Adaptation with Few-Shot Learning for Hand Gesture Recognition","authors":"E. Rahimian, Soheil Zabihi, A. Asif, S. F. Atashzar, Arash Mohammadi","doi":"10.1109/ICAS49788.2021.9551144","DOIUrl":null,"url":null,"abstract":"This work is motivated by potentials of Deep Neural Networks (DNNs)-based solutions in improving myoelectric control for trustworthy Human-Machine Interfacing (HMI). In this context, we propose the Trustworthy Few Shot-Hand Gesture Recognition (TFS-HGR) framework as a novel DNN-based architecture for performing Hand Gesture Recognition (HGR) via multi-channel surface Electromyography (sEMG) signals. The main objective of the TFS-HGR framework is to employ Few-Shot Learning (FSL) formulation with a focus on transferring information and knowledge between source and target domains (despite their inherit differences) to address limited availability of training data. The NinaPro DB5 dataset is used for evaluation purposes. The proposed TFS-HGR achieves a performance of 83.17% for new repetitions with few-shot observations, i.e., 5-way 10-shot classification. Moreover, the TFS-HGR with the accuracy of 75.29% also generalize to new gestures with few-shot observations, i.e., 5-way 10-shot classification.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work is motivated by potentials of Deep Neural Networks (DNNs)-based solutions in improving myoelectric control for trustworthy Human-Machine Interfacing (HMI). In this context, we propose the Trustworthy Few Shot-Hand Gesture Recognition (TFS-HGR) framework as a novel DNN-based architecture for performing Hand Gesture Recognition (HGR) via multi-channel surface Electromyography (sEMG) signals. The main objective of the TFS-HGR framework is to employ Few-Shot Learning (FSL) formulation with a focus on transferring information and knowledge between source and target domains (despite their inherit differences) to address limited availability of training data. The NinaPro DB5 dataset is used for evaluation purposes. The proposed TFS-HGR achieves a performance of 83.17% for new repetitions with few-shot observations, i.e., 5-way 10-shot classification. Moreover, the TFS-HGR with the accuracy of 75.29% also generalize to new gestures with few-shot observations, i.e., 5-way 10-shot classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于少镜头学习的可信自适应手势识别
这项工作的动机是基于深度神经网络(dnn)的解决方案在改善可信人机界面(HMI)的肌电控制方面的潜力。在这种背景下,我们提出了可信的少数短手手势识别(TFS-HGR)框架,作为一种新的基于dnn的架构,通过多通道表面肌电信号(sEMG)执行手势识别(HGR)。TFS-HGR框架的主要目标是采用Few-Shot Learning (FSL)公式,重点是在源域和目标域之间传递信息和知识(尽管它们存在继承差异),以解决训练数据的有限可用性。NinaPro DB5数据集用于评估目的。本文提出的TFS-HGR算法对于新重复的少次观测,即5-way 10-shot分类,达到了83.17%的性能。此外,准确率为75.29%的TFS-HGR还可以推广到较少镜头观察的新手势,即5-way 10-shot分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1