Detection and Localization of Copy-Move Forgery in Digital Images: Review and Challenges

G. Suresh, Chanamallu Srinivasa Rao
{"title":"Detection and Localization of Copy-Move Forgery in Digital Images: Review and Challenges","authors":"G. Suresh, Chanamallu Srinivasa Rao","doi":"10.1142/s0219467823500250","DOIUrl":null,"url":null,"abstract":"Copy move forgery in digital images became a common problem due to the wide accessibility of image processing algorithms and open-source editing software. The human visual system cannot identify the traces of forgery in the tampered image. The proliferation of such digital images through the internet and social media is possible with a finger touch. These tampered images have been used in news reports, judicial forensics, medical records, and financial statements. In this paper, a detailed review has been carried on various copy-move forgery detection (CMFD) and localization techniques. Further, challenges in the research are identified along with possible solutions.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823500250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copy move forgery in digital images became a common problem due to the wide accessibility of image processing algorithms and open-source editing software. The human visual system cannot identify the traces of forgery in the tampered image. The proliferation of such digital images through the internet and social media is possible with a finger touch. These tampered images have been used in news reports, judicial forensics, medical records, and financial statements. In this paper, a detailed review has been carried on various copy-move forgery detection (CMFD) and localization techniques. Further, challenges in the research are identified along with possible solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字图像中复制-移动伪造的检测与定位:回顾与挑战
由于图像处理算法和开源编辑软件的广泛使用,数字图像的复制伪造成为一个普遍的问题。人类的视觉系统无法从篡改的图像中识别出伪造的痕迹。通过互联网和社交媒体,这样的数字图像的扩散是可能的手指触摸。这些被篡改的图像被用于新闻报道、司法取证、医疗记录和财务报表。本文详细介绍了各种复制-移动伪造检测(CMFD)和定位技术。此外,研究中的挑战以及可能的解决方案被确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
An Object-Oriented Workflow Metamodel
IF 0 International Conference on Object Oriented Information SystemsPub Date : 1900-01-01 DOI: 10.1007/978-1-4471-0719-4_10
V. Carchiolo, A. Longheu, M. Malgeri
An Access Control Metamodel for Web Service-Oriented Architecture
IF 0 International Conference on Software Engineering Advances (ICSEA 2007)Pub Date : 2007-08-25 DOI: 10.1109/ICSEA.2007.15
Christian Emig, F. Brandt, S. Abeck, J. Biermann, Heiko Klarl
MetamEnTh: An Object-Oriented Metamodel for IoT Systems in Buildings
IF 8.2 1区 计算机科学IEEE Internet of Things JournalPub Date : 2024-03-05 DOI: 10.1109/JIOT.2024.3373330
Peter Yefi;Ramanunni Parakkal Menon;Ursula Eicker;Yann-Gaël Guéhéneuc
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Pattern Extraction with Deep Learning-Based Heart Disease Diagnosis Using Echocardiogram Images Certainty-Based Deep Fused Neural Network Using Transfer Learning and Adaptive Movement Estimation for the Diagnosis of Cardiomegaly Deep Ensemble Model for Spam Classification in Twitter via Sentiment Extraction: Bio-Inspiration-Based Classification Model A Systematic Survey on Photorealistic Computer Graphic and Photographic Image Discrimination A Review on Deep Learning Classifier for Hyperspectral Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1