Remote Compressive Sensing for Noisy M2M Networks

Alan Shenghan Tsai, Pin-Hsun Lin, Che-Ming Kuo, Hsuan-Jung Su
{"title":"Remote Compressive Sensing for Noisy M2M Networks","authors":"Alan Shenghan Tsai, Pin-Hsun Lin, Che-Ming Kuo, Hsuan-Jung Su","doi":"10.1109/ICS.2016.0147","DOIUrl":null,"url":null,"abstract":"In recent years, machine-to-machine (M2M) networks are widely considered in wireless communication system. Machines typically have constrained power, and their processing and communication capabilities are limited. To avoid the transmission of redundant information to improve the data rate, compressive sensing is a promising tool to be considered. Compressive sensing (CS) is especially useful for avoiding the redundant information to be transmitted such that the amount of transmitted data can be reduced. A framework for two-tier architecture of a remote compressive sensing scheme for M2M networks is developed where a statistical model replaces the standard sparsity model of classical compressive sensing. We consider this framework with noisy channels and derive an minimum mean square error (MMSE) decoder. Furthermore, we provide a way to produce sensing matrices and compare the proposed sensing matrices with random ones.","PeriodicalId":281088,"journal":{"name":"2016 International Computer Symposium (ICS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Computer Symposium (ICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICS.2016.0147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, machine-to-machine (M2M) networks are widely considered in wireless communication system. Machines typically have constrained power, and their processing and communication capabilities are limited. To avoid the transmission of redundant information to improve the data rate, compressive sensing is a promising tool to be considered. Compressive sensing (CS) is especially useful for avoiding the redundant information to be transmitted such that the amount of transmitted data can be reduced. A framework for two-tier architecture of a remote compressive sensing scheme for M2M networks is developed where a statistical model replaces the standard sparsity model of classical compressive sensing. We consider this framework with noisy channels and derive an minimum mean square error (MMSE) decoder. Furthermore, we provide a way to produce sensing matrices and compare the proposed sensing matrices with random ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
噪声M2M网络的远程压缩感知
近年来,机器对机器(M2M)网络在无线通信系统中得到了广泛的研究。机器的功率通常是有限的,它们的处理和通信能力也是有限的。为了避免冗余信息的传输以提高数据速率,压缩感知是一种很有前途的工具。压缩感知(CS)对于避免要传输的冗余信息以减少传输的数据量特别有用。提出了M2M网络远程压缩感知方案的两层架构框架,其中统计模型取代了经典压缩感知的标准稀疏性模型。我们考虑了该框架与噪声信道,并推导了最小均方误差(MMSE)解码器。此外,我们提供了一种产生感应矩阵的方法,并将所提出的感应矩阵与随机感应矩阵进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource Allocation Algorithms for LTE over Wi-Fi Spectrum A Dynamically Adjusted Vehicles Navigation Scheme with Real-Time Traffic Information to Relieve Regional Traffic Congestion in Vehicular Ad-Hoc Networks Forward/Backward Unforgeable Digital Signature Scheme Using Symmetric-Key Crypto-System Mobile Edge Fog Computing in 5G Era: Architecture and Implementation Investigating the Determinants of Mobile Learning Acceptance in Higher Education Based on UTAUT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1