{"title":"Network-Efficient Pipelining-Based Secure Multiparty Computation for Machine Learning Applications","authors":"Oscar G. Bautista, K. Akkaya","doi":"10.1109/LCN53696.2022.9843372","DOIUrl":null,"url":null,"abstract":"Secure multi-party computation (SMPC) allows mutually distrusted parties to evaluate a function jointly without revealing their private inputs. This technique helps organizations collaborate on a common goal without disclosing confidential or protected data. Despite its suitability for privacy-preserving computation, SMPC suffers from network-based performance limitations. Specifically, the SMPC parties perform the techniques in rounds, where they execute a local computation and then share their round output with the other parties. This network interchange creates a bottleneck as parties need to wait until the data propagates before resuming the execution. To reduce the SMPC execution time, we propose a pipelining-like approach for each round’s computation and communication by dividing the data and readjusting the execution order. Targeting deep learning applications, we propose strategies for the case of matrix multiplication, a core component of such applications. Our results on a distributed cloud deployment show a significant reduction in the SMPC execution time.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Secure multi-party computation (SMPC) allows mutually distrusted parties to evaluate a function jointly without revealing their private inputs. This technique helps organizations collaborate on a common goal without disclosing confidential or protected data. Despite its suitability for privacy-preserving computation, SMPC suffers from network-based performance limitations. Specifically, the SMPC parties perform the techniques in rounds, where they execute a local computation and then share their round output with the other parties. This network interchange creates a bottleneck as parties need to wait until the data propagates before resuming the execution. To reduce the SMPC execution time, we propose a pipelining-like approach for each round’s computation and communication by dividing the data and readjusting the execution order. Targeting deep learning applications, we propose strategies for the case of matrix multiplication, a core component of such applications. Our results on a distributed cloud deployment show a significant reduction in the SMPC execution time.