Wavelet vector quantization with matching pursuit

G. Davis, S. Mallat
{"title":"Wavelet vector quantization with matching pursuit","authors":"G. Davis, S. Mallat","doi":"10.1109/WITS.1994.513886","DOIUrl":null,"url":null,"abstract":"To compute the optimal expansion of signals in redundant dictionary of waveforms is an NP complete problem. We introduce a greedy-algorithm, called matching pursuit, that performs a sub-optimal expansion. This algorithm can be interpreted as a shape-gain multistage vector quantization. The waveforms are chosen iteratively in order to best match the signal structures. Matching pursuits are general procedures used to compute adaptive signal representations. Applications to speech and image processing with dictionaries of Gabor functions are shown, in particular for the noise removal.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To compute the optimal expansion of signals in redundant dictionary of waveforms is an NP complete problem. We introduce a greedy-algorithm, called matching pursuit, that performs a sub-optimal expansion. This algorithm can be interpreted as a shape-gain multistage vector quantization. The waveforms are chosen iteratively in order to best match the signal structures. Matching pursuits are general procedures used to compute adaptive signal representations. Applications to speech and image processing with dictionaries of Gabor functions are shown, in particular for the noise removal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小波矢量量化与匹配追踪
计算冗余波形字典中信号的最优展开是一个NP完全问题。我们引入了一种贪婪算法,称为匹配追踪,它执行次优扩展。该算法可以解释为形状增益多阶段矢量量化。波形是迭代选择的,以便最好地匹配信号结构。匹配追踪是用于计算自适应信号表示的一般过程。介绍了Gabor函数字典在语音和图像处理中的应用,特别是在去噪方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1