An improved multi-objective memetic algorithm for bi-objective permutation flow shop scheduling

Zhekun Zhao, Xue-qing He, Feng Liu
{"title":"An improved multi-objective memetic algorithm for bi-objective permutation flow shop scheduling","authors":"Zhekun Zhao, Xue-qing He, Feng Liu","doi":"10.1109/ICSSSM.2017.7996154","DOIUrl":null,"url":null,"abstract":"A permutation flowshop scheduling problem of optimizing the makespan and the total flow time, which can be expressed as Fm|prum|(Cmax, ΣCi), is considered in this paper. An improved multi-objective memetic algorithm (IMOMA) is proposed due to the NP-hardness of the problem. In order to effectively trade-off between two objectives, we propose a NEH and LR heuristic based initialization strategy and a powerful local search strategy, in the searching framework of memetic algorithm. Finally, we perform computational experiments by solving ten largest scale instances of Taillard benchmarks, with 500 jobs and 20 machines. The results demonstrate that the proposed IMOMA outperforms the NEHFF heuristic and two state-of-the-art evolutionary multi-objective algorithms, NSGA-II and MOEA/D with respect to convergence and diversity.","PeriodicalId":239892,"journal":{"name":"2017 International Conference on Service Systems and Service Management","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Service Systems and Service Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSSM.2017.7996154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A permutation flowshop scheduling problem of optimizing the makespan and the total flow time, which can be expressed as Fm|prum|(Cmax, ΣCi), is considered in this paper. An improved multi-objective memetic algorithm (IMOMA) is proposed due to the NP-hardness of the problem. In order to effectively trade-off between two objectives, we propose a NEH and LR heuristic based initialization strategy and a powerful local search strategy, in the searching framework of memetic algorithm. Finally, we perform computational experiments by solving ten largest scale instances of Taillard benchmarks, with 500 jobs and 20 machines. The results demonstrate that the proposed IMOMA outperforms the NEHFF heuristic and two state-of-the-art evolutionary multi-objective algorithms, NSGA-II and MOEA/D with respect to convergence and diversity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双目标置换流水车间调度的改进多目标模因算法
本文研究了一个以最大完工时间和总流时间为优化目标的置换流水车间调度问题,其表达式为Fm|prum|(Cmax, ΣCi)。针对该问题的np -硬度,提出了一种改进的多目标模因算法。在模因算法的搜索框架中,提出了一种基于NEH和LR的启发式初始化策略和一种强大的局部搜索策略,以实现两个目标之间的有效权衡。最后,我们通过求解10个最大规模的Taillard基准实例,使用500个工作和20台机器进行计算实验。结果表明,该算法在收敛性和多样性方面优于NEHFF启发式算法和两种最先进的进化多目标算法NSGA-II和MOEA/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page Analysis of bullwhip effect and the robustness of supply chain using a hybrid Taguchi and dual response surface method Fleet management for Electric Vehicles sharing system under uncertain demand Pricing strategies of differentiated services in a single server system Mathematical model and algorithm for the berth and yard resource allocation at seaports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1