Coherence models in schizophrenia

S. Just, Erik Haegert, Nora Kořánová, Anna-Lena Bröcker, Ivan Nenchev, J. Funcke, C. Montag, Manfred Stede
{"title":"Coherence models in schizophrenia","authors":"S. Just, Erik Haegert, Nora Kořánová, Anna-Lena Bröcker, Ivan Nenchev, J. Funcke, C. Montag, Manfred Stede","doi":"10.18653/v1/W19-3015","DOIUrl":null,"url":null,"abstract":"Incoherent discourse in schizophrenia has long been recognized as a dominant symptom of the mental disorder (Bleuler, 1911/1950). Recent studies have used modern sentence and word embeddings to compute coherence metrics for spontaneous speech in schizophrenia. While clinical ratings always have a subjective element, computational linguistic methodology allows quantification of speech abnormalities. Clinical and empirical knowledge from psychiatry provide the theoretical and conceptual basis for modelling. Our study is an interdisciplinary attempt at improving coherence models in schizophrenia. Speech samples were obtained from healthy controls and patients with a diagnosis of schizophrenia or schizoaffective disorder and different severity of positive formal thought disorder. Interviews were transcribed and coherence metrics derived from different embeddings. One model found higher coherence metrics for controls than patients. All other models remained non-significant. More detailed analysis of the data motivates different approaches to improving coherence models in schizophrenia, e.g. by assessing referential abnormalities.","PeriodicalId":201097,"journal":{"name":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","volume":"345 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Computational Linguistics and Clinical Psychology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Incoherent discourse in schizophrenia has long been recognized as a dominant symptom of the mental disorder (Bleuler, 1911/1950). Recent studies have used modern sentence and word embeddings to compute coherence metrics for spontaneous speech in schizophrenia. While clinical ratings always have a subjective element, computational linguistic methodology allows quantification of speech abnormalities. Clinical and empirical knowledge from psychiatry provide the theoretical and conceptual basis for modelling. Our study is an interdisciplinary attempt at improving coherence models in schizophrenia. Speech samples were obtained from healthy controls and patients with a diagnosis of schizophrenia or schizoaffective disorder and different severity of positive formal thought disorder. Interviews were transcribed and coherence metrics derived from different embeddings. One model found higher coherence metrics for controls than patients. All other models remained non-significant. More detailed analysis of the data motivates different approaches to improving coherence models in schizophrenia, e.g. by assessing referential abnormalities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精神分裂症的连贯性模型
精神分裂症的语无伦次一直被认为是精神障碍的主要症状(Bleuler, 1911/1950)。最近的研究使用现代句子和词嵌入来计算精神分裂症患者自发言语的连贯度量。虽然临床评分总是有主观因素,但计算语言学方法允许对言语异常进行量化。来自精神病学的临床和经验知识为建模提供了理论和概念基础。我们的研究是一项跨学科的尝试,旨在改善精神分裂症的连贯模型。语言样本来自健康对照和诊断为精神分裂症或分裂情感性障碍和不同严重程度的积极形式思维障碍的患者。对访谈进行转录,并从不同的嵌入中得出一致性指标。一个模型发现对照组的一致性指标高于患者。所有其他模型仍然不显著。更详细的数据分析激发了不同的方法来改善精神分裂症的一致性模型,例如通过评估参照异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depressed Individuals Use Negative Self-Focused Language When Recalling Recent Interactions with Close Romantic Partners but Not Family or Friends Suicide Risk Assessment on Social Media: USI-UPF at the CLPsych 2019 Shared Task ConvSent at CLPsych 2019 Task A: Using Post-level Sentiment Features for Suicide Risk Prediction on Reddit Linguistic Analysis of Schizophrenia in Reddit Posts Predicting Suicide Risk from Online Postings in Reddit The UGent-IDLab submission to the CLPysch 2019 Shared Task A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1