Forecasting Ethereum Price by Tuned Long Short-Term Memory Model

Marko Stankovic, N. Bačanin, M. Zivkovic, Luka Jovanovic, Joseph Mani, Milos Antonijevic
{"title":"Forecasting Ethereum Price by Tuned Long Short-Term Memory Model","authors":"Marko Stankovic, N. Bačanin, M. Zivkovic, Luka Jovanovic, Joseph Mani, Milos Antonijevic","doi":"10.1109/TELFOR56187.2022.9983702","DOIUrl":null,"url":null,"abstract":"Cryptocurrencies have established a firm position in the economic world in the past decade, with thousands of distinctive currencies available for electronic payments. The majority of cryptocurrencies, however, experience extremely volatile price perturbations, drastically affecting investors and traders. To address this problem, this paper proposes long short-term memory approach tuned by salp swarm metaheuristics. This hybrid model has been validated on a benchmark financial dataset, and the outcomes have been compared to other cutting-edge methods. The results suggest that the proposed method outperformed the competitors, showing significant potential in time-series prediction tasks.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cryptocurrencies have established a firm position in the economic world in the past decade, with thousands of distinctive currencies available for electronic payments. The majority of cryptocurrencies, however, experience extremely volatile price perturbations, drastically affecting investors and traders. To address this problem, this paper proposes long short-term memory approach tuned by salp swarm metaheuristics. This hybrid model has been validated on a benchmark financial dataset, and the outcomes have been compared to other cutting-edge methods. The results suggest that the proposed method outperformed the competitors, showing significant potential in time-series prediction tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于调整长短期记忆模型的以太坊价格预测
在过去的十年里,加密货币在经济世界中建立了稳固的地位,有数千种不同的货币可用于电子支付。然而,大多数加密货币都经历了极不稳定的价格波动,极大地影响了投资者和交易者。为了解决这一问题,本文提出了一种基于salp群元启发式的长短期记忆方法。该混合模型已在基准金融数据集上进行了验证,并将结果与其他前沿方法进行了比较。结果表明,该方法优于竞争对手,在时间序列预测任务中显示出显著的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overhead Analysis of a Bio-Inspired Routing over FANET A multispectral acquisition system for potential detection of Flavescence dorée AI-Blockchain Systems in Aerospace Engineering and Management: Review and Challenges A New Evaluation Method for Call Rating in Contact Center 2D Overlapping Range-Doppler Map Approach for Helicopter Classification by Using GRU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1