Chiller Plant Management Optimization By Artificial Intelligence

F. Al Qahtani, M. Muaafa
{"title":"Chiller Plant Management Optimization By Artificial Intelligence","authors":"F. Al Qahtani, M. Muaafa","doi":"10.1109/SASG57022.2022.10199765","DOIUrl":null,"url":null,"abstract":"Chiller plants (aka: district cooling) account for up to 50% of total energy consumption in a typical facility. Real-time data collected from the central control and monitoring system of a district cooling plant on the operation of chillers, cooling towers, water pumps would help optimize the operation of the system and identify energy saving opportunities. This is made possible by the machine learning capability of AI. It would conduct big data analysis on the characteristics and operation logs of different components of the chiller plant and would then make recommendations for system optimization.","PeriodicalId":206589,"journal":{"name":"2022 Saudi Arabia Smart Grid (SASG)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Saudi Arabia Smart Grid (SASG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASG57022.2022.10199765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chiller plants (aka: district cooling) account for up to 50% of total energy consumption in a typical facility. Real-time data collected from the central control and monitoring system of a district cooling plant on the operation of chillers, cooling towers, water pumps would help optimize the operation of the system and identify energy saving opportunities. This is made possible by the machine learning capability of AI. It would conduct big data analysis on the characteristics and operation logs of different components of the chiller plant and would then make recommendations for system optimization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工智能优化冷水机组管理
在一个典型的设施中,冷冻厂(又名:区域供冷)占总能耗的50%。从区域供冷厂的中央控制及监察系统收集有关冷水机、冷却塔及水泵运作的实时数据,有助优化系统的运作,并找出节省能源的机会。这是由人工智能的机器学习能力实现的。对冷水机组各部件的特性和运行日志进行大数据分析,提出系统优化建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SASG 2022 Cover Page Hardware Demonstration of a Coding-Based Attack Detection/Correction Metering System Model-free Reinforcement Learning for Demand Response in PV-rich Distribution Systems PV and Gas Storage Solution to Optimize and Enhance Power/Gas System Reliability Optimal Power Flow Application On Load Increase, Contingency Constraint And Wind Integration Considering Uncertainty Of Wind
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1