Applications of Linear Programming Techniques to Satellite Power Management and Scheduling

Joshua J. R. Critchley-Marrows, M. Isacsson, Agnes Gårdebäck
{"title":"Applications of Linear Programming Techniques to Satellite Power Management and Scheduling","authors":"Joshua J. R. Critchley-Marrows, M. Isacsson, Agnes Gårdebäck","doi":"10.2322/tastj.17.57","DOIUrl":null,"url":null,"abstract":"The power system is one of the most important subsystems for a successful space mission. Any failure in this subsystem leads to a direct loss of a satellite. This creates a need for a power schedule to be effectively and efficiently produced, especially if requirements are constantly changing. This paper presents the application of linear programming techniques to solving the power schedule problem, with the more specific usage of mixed-integer linear programming (MILP). The illustration of the approach is applied to a Swedish student satellite, which consists of the necessary subsystems and eight separate experiments. Two programs are developed, one studying the satellite lifetime in terms of orbital cycles and the other studying the individual orbit cycle. Simulating the lifetime of the satellite over 5000 orbit cycles, the battery level did not decline below 76.35%. Using a computer with an Intel i4 processor, this simulation took 3.2 hrs, with individual orbits taking 2.3 s each. Further work includes developing the program to be completed on-aboard the satellite, adapting to new scenarios, and incorporating a model for the decline of battery performance over time.","PeriodicalId":120185,"journal":{"name":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/tastj.17.57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The power system is one of the most important subsystems for a successful space mission. Any failure in this subsystem leads to a direct loss of a satellite. This creates a need for a power schedule to be effectively and efficiently produced, especially if requirements are constantly changing. This paper presents the application of linear programming techniques to solving the power schedule problem, with the more specific usage of mixed-integer linear programming (MILP). The illustration of the approach is applied to a Swedish student satellite, which consists of the necessary subsystems and eight separate experiments. Two programs are developed, one studying the satellite lifetime in terms of orbital cycles and the other studying the individual orbit cycle. Simulating the lifetime of the satellite over 5000 orbit cycles, the battery level did not decline below 76.35%. Using a computer with an Intel i4 processor, this simulation took 3.2 hrs, with individual orbits taking 2.3 s each. Further work includes developing the program to be completed on-aboard the satellite, adapting to new scenarios, and incorporating a model for the decline of battery performance over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性规划技术在卫星电源管理与调度中的应用
动力系统是成功完成航天任务最重要的子系统之一。这个子系统的任何故障都会导致卫星的直接损失。这就需要有效和高效地制定电源计划,特别是在需求不断变化的情况下。本文介绍了线性规划技术在求解电力调度问题中的应用,并具体介绍了混合整数线性规划(MILP)的应用。该方法的实例应用于瑞典的一颗学生卫星,该卫星由必要的子系统和8个独立的实验组成。开发了两个程序,一个是从轨道周期的角度研究卫星寿命,另一个是从单个轨道周期的角度研究卫星寿命。模拟卫星5000次轨道循环以上的寿命,电池电量没有下降到76.35%以下。在使用英特尔i4处理器的计算机上,这个模拟花了3.2小时,每个轨道花了2.3秒。进一步的工作包括开发将在卫星上完成的计划,适应新的情况,并结合电池性能随时间下降的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allowable Initial Relative Velocity of a Net to Contact and Capture Space Debris A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization Application of Machine Learning to the Particle Identification of GAPS Numerical Analysis on Reusable Rocket Aerodynamics with Reduced-Yaw-Force Configurations Investigation into Star Tracker Algorithms using Smartphones with Application to High-Precision Pointing CubeSats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1