Performance bounds for parameter estimation from time-continuous observations

D. Kazakos
{"title":"Performance bounds for parameter estimation from time-continuous observations","authors":"D. Kazakos","doi":"10.1109/CDC.1980.271883","DOIUrl":null,"url":null,"abstract":"In this paper we derive recursive expression for certain distance measures between time-continuous, stationary, vector Gaussian processes, and then utilize them to derive upper bounds to the mean square error performance of the Bayes and Maximum Likelihood estimate of a parameter, when only a finite-valued parameter set is utilized. The question of convergence when the true parameter value does not belong to the finite set is also answered.","PeriodicalId":332964,"journal":{"name":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1980.271883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we derive recursive expression for certain distance measures between time-continuous, stationary, vector Gaussian processes, and then utilize them to derive upper bounds to the mean square error performance of the Bayes and Maximum Likelihood estimate of a parameter, when only a finite-valued parameter set is utilized. The question of convergence when the true parameter value does not belong to the finite set is also answered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时间连续观测参数估计的性能界限
本文推导了时间连续、平稳、矢量高斯过程之间的距离度量的递推表达式,并利用它推导了参数的贝叶斯估计和极大似然估计在只使用有限值参数集时的均方误差性能的上界。同时也回答了真参数值不属于有限集时的收敛性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mathematical approach to organization theory Newton's method and the goldstein step length rule for constrained minimization On linear discrete-time deadbeat control Three steps to alleviate control and observation spillover problems of large space structures Parallel optimization algorithms using sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1