Neuro-fuzzy-combiner: an effective multiple classifier system

Ashish Ghosh, B. Uma Shankar, L. Bruzzone, S. Meher
{"title":"Neuro-fuzzy-combiner: an effective multiple classifier system","authors":"Ashish Ghosh, B. Uma Shankar, L. Bruzzone, S. Meher","doi":"10.1504/IJKESDP.2010.034678","DOIUrl":null,"url":null,"abstract":"A neuro-fuzzy-combiner (NFC) is proposed to design an efficient multiple classifier system (MCS) with an aim to have an effective solution scheme for difficult classification problems. Although, a number of combiners exist in the literature, they do not provide consistently good performance on different datasets. In this scenario: 1) we propose an effective multiple classifier system (MCS) based on NFC that fuses the output of a set of fuzzy classifiers; 2) conduct an extensive experimental analysis to justify the effectiveness of the proposed NFC. In the proposed technique, we used a neural network to combine the output of a set of fuzzy classifiers using the principles of neuro-fuzzy hybridisation. The neural combiner adaptively learns its parameters depending on the input data, and thus the output is robust. Superiority of the proposed combiner has been demonstrated experimentally on five standard datasets and two remote sensing images. It performed consistently better than the existing combiners over all the considered datasets.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2010.034678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

A neuro-fuzzy-combiner (NFC) is proposed to design an efficient multiple classifier system (MCS) with an aim to have an effective solution scheme for difficult classification problems. Although, a number of combiners exist in the literature, they do not provide consistently good performance on different datasets. In this scenario: 1) we propose an effective multiple classifier system (MCS) based on NFC that fuses the output of a set of fuzzy classifiers; 2) conduct an extensive experimental analysis to justify the effectiveness of the proposed NFC. In the proposed technique, we used a neural network to combine the output of a set of fuzzy classifiers using the principles of neuro-fuzzy hybridisation. The neural combiner adaptively learns its parameters depending on the input data, and thus the output is robust. Superiority of the proposed combiner has been demonstrated experimentally on five standard datasets and two remote sensing images. It performed consistently better than the existing combiners over all the considered datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经模糊组合器:一种有效的多分类器系统
提出了一种神经模糊组合(NFC)方法来设计一种高效的多分类器系统(MCS),目的是为复杂的分类问题提供一种有效的解决方案。虽然,文献中存在许多组合器,但它们不能在不同的数据集上提供一致的良好性能。在这种情况下:1)我们提出了一种有效的基于NFC的多分类器系统(MCS),该系统融合了一组模糊分类器的输出;2)进行广泛的实验分析,以证明所提出的NFC的有效性。在提出的技术中,我们使用神经网络结合一组模糊分类器的输出,使用神经模糊杂交的原则。神经组合器根据输入数据自适应学习其参数,因此输出具有鲁棒性。在5个标准数据集和2幅遥感图像上进行了实验,证明了该组合器的优越性。在所有考虑的数据集上,它的表现始终优于现有的组合器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning combined features for automatic facial expression recognition An efficient similarity search using a combination between descriptors: a case of study in human face recognition Visual content summarisation for instructional videos using AdaBoost and SIFT Role-based access control in BagTrac application Fuzzy detection orange tree leaves diseases using a co-occurrence matrix-based K-nearest neighbours classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1