Feature-based Systematic Analysis of Advanced Persistent Threats

M. Miguez, Bahman Sassani (Sarrafpour)
{"title":"Feature-based Systematic Analysis of Advanced Persistent Threats","authors":"M. Miguez, Bahman Sassani (Sarrafpour)","doi":"10.5772/acrt.21","DOIUrl":null,"url":null,"abstract":"Advanced Persistent Threats (APT) and Targeted Attacks (TA) targeting high-value organizations continue to become more common. These slow (sometimes carried on over the years), fragmented, distributed, seemingly unrelated, very sophisticated, highly adaptable, and, above all, stealthy attacks have existed since the large-scale popularization of computing in the 1990s and have intensified during the 2000s. The aim of attackers has expanded from espionage to attaining financial gain, creating disruption, and hacktivism. These activities have a negative impact on the targets, many times costing significant amounts of money and destabilizing organizations and governments. The resounding goal of this research is to analyze previous academic and industrial research of 72 major APT attacks between 2008 and 2018, using 12 features, and propose a categorization based on the targeted platform, the time elapsed to discovery, targets, type, purpose, propagation methods, and derivative attacks. This categorization provides a view of the effort of the attackers. It aims to help focus the design of intelligent detection systems on increasing the percentage of discovered and stopped attacks.","PeriodicalId":431659,"journal":{"name":"AI, Computer Science and Robotics Technology","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI, Computer Science and Robotics Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/acrt.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced Persistent Threats (APT) and Targeted Attacks (TA) targeting high-value organizations continue to become more common. These slow (sometimes carried on over the years), fragmented, distributed, seemingly unrelated, very sophisticated, highly adaptable, and, above all, stealthy attacks have existed since the large-scale popularization of computing in the 1990s and have intensified during the 2000s. The aim of attackers has expanded from espionage to attaining financial gain, creating disruption, and hacktivism. These activities have a negative impact on the targets, many times costing significant amounts of money and destabilizing organizations and governments. The resounding goal of this research is to analyze previous academic and industrial research of 72 major APT attacks between 2008 and 2018, using 12 features, and propose a categorization based on the targeted platform, the time elapsed to discovery, targets, type, purpose, propagation methods, and derivative attacks. This categorization provides a view of the effort of the attackers. It aims to help focus the design of intelligent detection systems on increasing the percentage of discovered and stopped attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征的高级持续威胁系统分析
针对高价值组织的高级持续性威胁(APT)和针对性攻击(TA)变得越来越普遍。这些缓慢的(有时持续数年)、碎片化的、分布式的、看似无关的、非常复杂的、高度适应性的、最重要的是,隐秘的攻击自20世纪90年代大规模普及计算以来就存在,并在21世纪初愈演愈烈。攻击者的目标已经从间谍活动扩展到获取经济利益、制造破坏和黑客行动主义。这些活动会对目标产生负面影响,很多时候会耗费大量资金,破坏组织和政府的稳定。本研究的目标是分析2008年至2018年期间的72次主要APT攻击的学术和行业研究,使用12个特征,并根据目标平台,发现时间,目标,类型,目的,传播方法和衍生攻击提出分类。这种分类提供了攻击者工作的视图。它旨在帮助智能检测系统的设计集中在提高发现和阻止攻击的百分比上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interaction Patterns During Block-based Programming Activities Predict Computational Thinking: Analysis of the Differences in Gender, Cognitive Load, Spatial Ability, and Programming Proficiency Numerical Analysis of a Time-Simultaneous Multigrid Solver for Stabilized Convection-Dominated Transport Problems in 1D Artificial Neural Network Control Applied to a Photovoltaic-Battery Microgrid System Real-Time Perception Enhancement in Obscured Environments for Underground Mine Search and Rescue Teams Educational Robots for Social and Emotional Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1