An Overview of Spikingneural Networks

Tian Jie, Liao Jianping, Wang Guangshuo, Xiao Fei
{"title":"An Overview of Spikingneural Networks","authors":"Tian Jie, Liao Jianping, Wang Guangshuo, Xiao Fei","doi":"10.1109/ICCWAMTIP56608.2022.10016558","DOIUrl":null,"url":null,"abstract":"In recent years, Artificial neural network has made great progress in image, machine perception and other aspects, and has a very good performance in the scope of deep learning. As a highly intensive neural network, Artificial neural network's performance has gradually reached saturation in today's increasing network demand, but its efficiency and consumption are still relatively large. Therefore, more and more attention has been paid to the peak neural network with low energy consumption in operating equipment. Spiking neural networks shows good performance of low power consumption when running on hardware. More and more researchers begin to use Spiking neural networks to study the performance of image recognition and other aspects. Although Spiking neural network has many limitations in accuracy and training difficulty, it has stimulated the research enthusiasm of many researchers. Spiking neural networks has developed rapidly, and many training methods can achieve the same or even higher accuracy than Artificial neural networks. In this paper, we further understand the advantages and framework of Spiking neural network through its development.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Artificial neural network has made great progress in image, machine perception and other aspects, and has a very good performance in the scope of deep learning. As a highly intensive neural network, Artificial neural network's performance has gradually reached saturation in today's increasing network demand, but its efficiency and consumption are still relatively large. Therefore, more and more attention has been paid to the peak neural network with low energy consumption in operating equipment. Spiking neural networks shows good performance of low power consumption when running on hardware. More and more researchers begin to use Spiking neural networks to study the performance of image recognition and other aspects. Although Spiking neural network has many limitations in accuracy and training difficulty, it has stimulated the research enthusiasm of many researchers. Spiking neural networks has developed rapidly, and many training methods can achieve the same or even higher accuracy than Artificial neural networks. In this paper, we further understand the advantages and framework of Spiking neural network through its development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脉冲神经网络概述
近年来,人工神经网络在图像、机器感知等方面取得了很大的进步,在深度学习的范围内有着非常好的表现。人工神经网络作为一种高度密集的神经网络,在网络需求日益增长的今天,其性能已经逐渐达到饱和,但其效率和消耗仍然比较大。因此,低能耗的峰值神经网络在运行设备中越来越受到重视。在硬件上运行时,脉冲神经网络显示出较好的低功耗性能。越来越多的研究者开始利用脉冲神经网络来研究图像识别等方面的性能。尽管脉冲神经网络在准确性和训练难度上存在诸多局限性,但它激发了许多研究者的研究热情。脉冲神经网络发展迅速,许多训练方法可以达到与人工神经网络相同甚至更高的精度。本文通过对脉冲神经网络的发展,进一步了解了脉冲神经网络的优点和框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcortico-Cortical Interactions Of Edge Functional Connectivity In Parkinson’s Disease Feature Modeling and Dimensionality Reduction to Improve ML-Based DDOS Detection Systems in SDN Environment Research on the "Deep Integration" of Information Technology and Precise Civic Education in Universities Knowledge Extraction and Discrimination Based Calibration on Medical Imaging Classification AW-PCNN: Adaptive Weighting Pyramidal Convolutional Neural Network for Fine-Grained Few-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1