Using vector quantization to build nonlinear factorial models of the low-dimensional independent manifolds in optical imaging data

Penio S. Penev, Manuela Gegiu, E. Kaplan
{"title":"Using vector quantization to build nonlinear factorial models of the low-dimensional independent manifolds in optical imaging data","authors":"Penio S. Penev, Manuela Gegiu, E. Kaplan","doi":"10.1109/ICIP.2000.900952","DOIUrl":null,"url":null,"abstract":"In many functional-imaging scenarios, four sources contribute to the image formation: the intrinsic variability of the object under study, the variability due to the experimentally controlled stimulus, the state of the equipment, and white noise. These sources are presumably independent, and under a multidimensional Gaussian assumption, linear discriminant analysis is typically used to separate them. Here we show that when an initial entropy model of optical imaging data is derived by the Karhunen-Loeve transform (KLT), vector quantization can be used to find KLT subspaces in which the Gaussian assumption does not hold; this results in the characterization of low-dimensional nonlinear manifolds that are embedded in those subspaces, and along which the probability density clusters. Further, this information is utilized to improve the probability model by a factorization into: one nonlinear independent parameter along the manifold and a linear residual.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.900952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In many functional-imaging scenarios, four sources contribute to the image formation: the intrinsic variability of the object under study, the variability due to the experimentally controlled stimulus, the state of the equipment, and white noise. These sources are presumably independent, and under a multidimensional Gaussian assumption, linear discriminant analysis is typically used to separate them. Here we show that when an initial entropy model of optical imaging data is derived by the Karhunen-Loeve transform (KLT), vector quantization can be used to find KLT subspaces in which the Gaussian assumption does not hold; this results in the characterization of low-dimensional nonlinear manifolds that are embedded in those subspaces, and along which the probability density clusters. Further, this information is utilized to improve the probability model by a factorization into: one nonlinear independent parameter along the manifold and a linear residual.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用矢量量化方法建立光学成像数据中低维独立流形的非线性因子模型
在许多功能成像场景中,有四个来源有助于图像的形成:被研究对象的内在变异性、实验控制刺激引起的变异性、设备的状态和白噪声。这些源大概是独立的,在多维高斯假设下,通常使用线性判别分析来分离它们。本文表明,当光学成像数据的初始熵模型由Karhunen-Loeve变换(KLT)导出时,矢量量化可以用于寻找高斯假设不成立的KLT子空间;这导致嵌入在这些子空间中的低维非线性流形的表征,并沿着其概率密度聚集。此外,利用这些信息,通过分解成:沿流形的一个非线性独立参数和一个线性残差来改进概率模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust shape tracking in the presence of cluttered background Symmetric region growing Joint halftoning and watermarking A deformable template model based on fuzzy alignment algorithm Region-based scanning for image compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1