Kernels for structured data

Thomas Gärtner
{"title":"Kernels for structured data","authors":"Thomas Gärtner","doi":"10.1142/6855","DOIUrl":null,"url":null,"abstract":"Learning from structured data is becoming increasingly important. However, most prior work on kernel methods has focused on learning from attribute-value data. Only recently have researchers started investigating kernels for structured data. This paper describes how kernel definitions can be simplified by identifying the structure of the data and how kernels can be defined on this structure. We propose a kernel for structured data, prove that it is positive definite, and show how it can be adapted in practical applications.","PeriodicalId":440867,"journal":{"name":"Series in Machine Perception and Artificial Intelligence","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"188","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Series in Machine Perception and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/6855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 188

Abstract

Learning from structured data is becoming increasingly important. However, most prior work on kernel methods has focused on learning from attribute-value data. Only recently have researchers started investigating kernels for structured data. This paper describes how kernel definitions can be simplified by identifying the structure of the data and how kernels can be defined on this structure. We propose a kernel for structured data, prove that it is positive definite, and show how it can be adapted in practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构化数据的内核
从结构化数据中学习正变得越来越重要。然而,之前关于核方法的大部分工作都集中在从属性值数据中学习。直到最近,研究人员才开始研究结构化数据的核。本文描述了如何通过识别数据的结构来简化核定义,以及如何在该结构上定义核。我们提出了一个结构化数据的核,证明了它是正定的,并展示了它如何适用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet Theory Approach to Pattern Recognition DIVA-HisDB A Precisely Annotated Dataset of Challenging Medieval Manuscripts Conclusions and Future Trends FRONT MATTER BACK MATTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1