Information transfer within human robot teams: Multimodal attention management in human-robot interaction

Bruce J. P. Mortimer, L. Elliott
{"title":"Information transfer within human robot teams: Multimodal attention management in human-robot interaction","authors":"Bruce J. P. Mortimer, L. Elliott","doi":"10.1109/COGSIMA.2017.7929608","DOIUrl":null,"url":null,"abstract":"Human-robot teams can incorporate advanced technology such as distributed mobile sensor networks, integrated communications, visualization technology, and other means to acquire and assess information. These factors can greatly affect mission effectiveness, safety, and survivability, by providing critical information and suggesting courses of action. However, information overload can result. Tactical situation awareness (SA) can be improved if human-robot communications are prioritized according to importance and appropriateness for single or multi-sensory display. In this paradigm, the tasks of the human and robot are somewhat independent or autonomous, but complimentary. Handling the amount, frequency and transfer of information, from the robot to the user requires a careful systems approach, an understanding of the mission context, and multisensory information processing issues. This report highlights attention management issues identified during task reengagement and offers guidelines relevant to tactile cues within multisensory bidirectional human robot communications.","PeriodicalId":252066,"journal":{"name":"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGSIMA.2017.7929608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Human-robot teams can incorporate advanced technology such as distributed mobile sensor networks, integrated communications, visualization technology, and other means to acquire and assess information. These factors can greatly affect mission effectiveness, safety, and survivability, by providing critical information and suggesting courses of action. However, information overload can result. Tactical situation awareness (SA) can be improved if human-robot communications are prioritized according to importance and appropriateness for single or multi-sensory display. In this paradigm, the tasks of the human and robot are somewhat independent or autonomous, but complimentary. Handling the amount, frequency and transfer of information, from the robot to the user requires a careful systems approach, an understanding of the mission context, and multisensory information processing issues. This report highlights attention management issues identified during task reengagement and offers guidelines relevant to tactile cues within multisensory bidirectional human robot communications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人机团队中的信息传递:人机交互中的多模态注意力管理
人机团队可以采用先进的技术,如分布式移动传感器网络、集成通信、可视化技术和其他手段来获取和评估信息。这些因素可以通过提供关键信息和建议行动方案,极大地影响任务的有效性、安全性和生存能力。然而,可能会导致信息过载。根据单感官或多感官显示的重要性和适宜性对人机通信进行优先排序,可以提高战术态势感知能力。在这个范例中,人类和机器人的任务在某种程度上是独立或自主的,但却是互补的。处理从机器人到用户的信息的数量、频率和传输需要谨慎的系统方法,对任务背景的理解,以及多感官信息处理问题。本报告强调了在任务再投入过程中发现的注意力管理问题,并提供了与多感官双向人机通信中的触觉线索相关的指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rightward attentional bias in windshield displays: Implication towards external human machine interfaces for self-driving cars Situation-based ontologies for a computational framework for identity focusing on crime scenes Automation bias with a conversational interface: User confirmation of misparsed information Using context and robot-human communication to resolve unexpected situational conflicts A model based on rough sets for situation comprehension and projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1