A Neural Network Approach to Classify Mixed Classes Using Multi Frequency Sar data

A. Kukunuri, D. Murugan, Dharmendra Singh
{"title":"A Neural Network Approach to Classify Mixed Classes Using Multi Frequency Sar data","authors":"A. Kukunuri, D. Murugan, Dharmendra Singh","doi":"10.1109/IGARSS39084.2020.9324541","DOIUrl":null,"url":null,"abstract":"Classification of mixed classes that are having similar backscatter response at different polarization combinations, using single frequency synthetic aperture radar (SAR) data is very intricate and there is always a high possibility of misclassification. Therefore, the main objective of this study is to classify the mixed classes using multi-frequency SAR data. An artificial neural network (ANN) approach is used for classification of the considered mixed classes using various polarimetric parameters obtained from single acquisition ALOS2 PALSAR (L band) and Sentinel 1 (C band) dual pol SAR data. An image statistical measure based separability index analysis is used to identify the optimal polarimetric parameters for developing the classifier. It is observed that, the proposed multi-frequency approach is able to classify the mixed classes with an overall accuracy of 87%.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Classification of mixed classes that are having similar backscatter response at different polarization combinations, using single frequency synthetic aperture radar (SAR) data is very intricate and there is always a high possibility of misclassification. Therefore, the main objective of this study is to classify the mixed classes using multi-frequency SAR data. An artificial neural network (ANN) approach is used for classification of the considered mixed classes using various polarimetric parameters obtained from single acquisition ALOS2 PALSAR (L band) and Sentinel 1 (C band) dual pol SAR data. An image statistical measure based separability index analysis is used to identify the optimal polarimetric parameters for developing the classifier. It is observed that, the proposed multi-frequency approach is able to classify the mixed classes with an overall accuracy of 87%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多频Sar数据的混合分类神经网络方法
利用单频合成孔径雷达(SAR)数据对不同极化组合下具有相似后向散射响应的混合类进行分类是一项非常复杂的工作,存在很大的误分类可能性。因此,本研究的主要目的是利用多频SAR数据对混合类进行分类。利用单采集ALOS2 PALSAR (L波段)和Sentinel 1 (C波段)双极化SAR数据获得的不同极化参数,采用人工神经网络(ANN)方法对考虑的混合类别进行分类。采用基于图像统计测度的可分性指标分析方法,确定了最优的极化参数。结果表明,所提出的多频方法能够以87%的总体准确率对混合类进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1