Supplementary Power Control of an HVDC System and its Impact on Electromechanical Dynamics

D. Obradović, Marina Oluić, R. Eriksson, M. Ghandhari
{"title":"Supplementary Power Control of an HVDC System and its Impact on Electromechanical Dynamics","authors":"D. Obradović, Marina Oluić, R. Eriksson, M. Ghandhari","doi":"10.1109/PESGM48719.2022.9917032","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive analysis of the impact that supplementary power control of an HVDC link has on the electromechanical dynamics of power systems. The presented work addresses an interesting phenomenon that may occur when an HVDC power controller is installed to support frequency stability. In specific cases, a high gain HVDC frequency controller could deteriorate system damping. The given analytical study is the first of its kind that addresses this issue by including both: (i) the important higher-order generator dynamics that affect small signal stability simultaneously with an HVDC control as well as (ii) the available local angle/frequency input signals of the controller. The methodological approach here analytically formulates the impact an HVDC control has on the single generator dynamics. Furthermore, the relationship between the damping/synchronizing coefficients and the HVDC gain is explicitly derived when a frequency proportional HVDC controller is installed. The derived expressions confirm that, indeed, there is an optimal HVDC gain with respect to the damping coefficient and a typically positive impact of the HVDC controller on the synchronizing component. Finally, the developed theoretical foundation is demonstrated by the tools of linear and nonlinear analysis in a one-machine system case study.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9917032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive analysis of the impact that supplementary power control of an HVDC link has on the electromechanical dynamics of power systems. The presented work addresses an interesting phenomenon that may occur when an HVDC power controller is installed to support frequency stability. In specific cases, a high gain HVDC frequency controller could deteriorate system damping. The given analytical study is the first of its kind that addresses this issue by including both: (i) the important higher-order generator dynamics that affect small signal stability simultaneously with an HVDC control as well as (ii) the available local angle/frequency input signals of the controller. The methodological approach here analytically formulates the impact an HVDC control has on the single generator dynamics. Furthermore, the relationship between the damping/synchronizing coefficients and the HVDC gain is explicitly derived when a frequency proportional HVDC controller is installed. The derived expressions confirm that, indeed, there is an optimal HVDC gain with respect to the damping coefficient and a typically positive impact of the HVDC controller on the synchronizing component. Finally, the developed theoretical foundation is demonstrated by the tools of linear and nonlinear analysis in a one-machine system case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高压直流系统补充功率控制及其对机电动力学的影响
本文全面分析了高压直流线路的补充功率控制对电力系统机电动力学的影响。所提出的工作解决了一个有趣的现象,当安装高压直流电源控制器以支持频率稳定性时,可能会发生这种现象。在特定情况下,高增益高压直流频率控制器可能会降低系统阻尼。给出的分析研究是同类中第一个解决这个问题的研究,它包括:(i)与HVDC控制同时影响小信号稳定性的重要高阶发电机动力学,以及(ii)控制器可用的本地角度/频率输入信号。这里的方法学方法解析地阐述了高压直流控制对单个发电机动力学的影响。此外,明确推导了安装频率比例直流控制器时阻尼/同步系数与直流增益之间的关系。推导出的表达式证实,确实存在一个关于阻尼系数的最优HVDC增益,并且HVDC控制器对同步组件具有典型的积极影响。最后,通过一个单机系统的实例分析,运用线性和非线性分析工具对所建立的理论基础进行了论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Framework for the Operational Reliability Evaluation of Integrated Electric Power-Gas Networks The Human Factors of Public Safety Power Shutoff (PSPS) Decision-Making: Improving Decision Support Displays Data-Driven Model Reduction of the Moving Boundary Heat Pump Dynamic Model Privacy-Preserving Feasibility Assessment for P2P Energy Trading and Storage Integration Distribution System Planning for Growth in Residential Electric Vehicle Adoption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1