Estimating Multivariate Conditional Models via Entropic Methods

Wenbo Cao, Craig Friedman
{"title":"Estimating Multivariate Conditional Models via Entropic Methods","authors":"Wenbo Cao, Craig Friedman","doi":"10.2139/ssrn.2379080","DOIUrl":null,"url":null,"abstract":"We introduce a new practical numerical method to estimate conditional distributions, p(y|x), where y is the value of a continuous random variable supported on R^{N_y} and x is in R^{N_x}, via the Maximum Entropy Principal. We are not aware of other practical robust methods to tackle this problem. We also introduce a new practical numerical method to estimate p(y|x), when the (multivariate) data associated with y are fat-tailed, by maximizing U-entropy, a generalization of entropy. The maximization procedures are convex programming problems and are therefore amenable to robust numerical solution. The models that result are provably robust in a certain decision-theoretic sense, and the U-entropy problem solutions are optimal with respect to Tsallis, Renyi and power f-entropy. In our approach, we do not make use of models for x or joint models of x and y. We benchmark our models against various alternative models on financial data and show that our approach produces models that outperform the benchmarks with respect to out-of-sample likelihood.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2379080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new practical numerical method to estimate conditional distributions, p(y|x), where y is the value of a continuous random variable supported on R^{N_y} and x is in R^{N_x}, via the Maximum Entropy Principal. We are not aware of other practical robust methods to tackle this problem. We also introduce a new practical numerical method to estimate p(y|x), when the (multivariate) data associated with y are fat-tailed, by maximizing U-entropy, a generalization of entropy. The maximization procedures are convex programming problems and are therefore amenable to robust numerical solution. The models that result are provably robust in a certain decision-theoretic sense, and the U-entropy problem solutions are optimal with respect to Tsallis, Renyi and power f-entropy. In our approach, we do not make use of models for x or joint models of x and y. We benchmark our models against various alternative models on financial data and show that our approach produces models that outperform the benchmarks with respect to out-of-sample likelihood.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用熵法估计多变量条件模型
我们引入了一种新的实用的数值方法来估计条件分布p(y|x),其中y是支持在R^{N_y}上的连续随机变量的值,x是支持在R^{N_x}上的。我们不知道还有其他切实可行的方法来解决这个问题。我们还介绍了一种新的实用数值方法来估计p(y|x),当与y相关的(多变量)数据是肥尾的,通过最大化u熵,熵的泛化。最大化过程是凸规划问题,因此适用于鲁棒数值解。所得模型在一定决策理论意义上具有可证明的鲁棒性,且u -熵问题解相对于Tsallis、Renyi和幂f-熵是最优的。在我们的方法中,我们没有使用x的模型或x和y的联合模型。我们将我们的模型与金融数据上的各种替代模型进行基准测试,并表明我们的方法产生的模型在样本外似然方面优于基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric Tests of Conditional Independence for Time Series Estimating Demand with Multi-Homing in Two-Sided Markets Does Court Type, Size and Employee Satisfaction Affect Court Speed?. Hierarchical Linear Modelling With Evidence from Kenya Development of Estimation and Forecasting Method in Intelligent Decision Support Systems Estimating Financial Networks by Realized Interdependencies: A Restricted Autoregressive Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1