A. Kravchenko, R. Khakimov, A. Shevchenko, A. Priimagi, M. Kaivola, V. Ovchinnikov
{"title":"Design and fabrication of plasmonic nanostructures for spectroscopic applications","authors":"A. Kravchenko, R. Khakimov, A. Shevchenko, A. Priimagi, M. Kaivola, V. Ovchinnikov","doi":"10.1109/WIO.2010.5582498","DOIUrl":null,"url":null,"abstract":"This work is focused on the design and fabrication of plasmonic nanostructures for spectroscopic applications. Our goal is to fabricate large-surface-area plasmonic nanostructures that provide local enhancement of electromagnetic fields for applications in fluorescence and Raman scattering spectroscopy. Periodic two-dimensional arrays of nanogrooves and nanopillars are obtained by holographic photolithography that makes use of surface relief gratings on azo-polymer films. Numerical calculations are performed to optimize the geometrical and material parameters of the structures in order to maximize the field enhancement factor.","PeriodicalId":201478,"journal":{"name":"2010 9th Euro-American Workshop on Information Optics","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 9th Euro-American Workshop on Information Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIO.2010.5582498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work is focused on the design and fabrication of plasmonic nanostructures for spectroscopic applications. Our goal is to fabricate large-surface-area plasmonic nanostructures that provide local enhancement of electromagnetic fields for applications in fluorescence and Raman scattering spectroscopy. Periodic two-dimensional arrays of nanogrooves and nanopillars are obtained by holographic photolithography that makes use of surface relief gratings on azo-polymer films. Numerical calculations are performed to optimize the geometrical and material parameters of the structures in order to maximize the field enhancement factor.