A Multimedia Information Retrieval Algorithm in P2P Networks Based on the Classification of Peers

G. Wu, Zhipeng Jiang, Suixiang Gao, Wenguo Yang
{"title":"A Multimedia Information Retrieval Algorithm in P2P Networks Based on the Classification of Peers","authors":"G. Wu, Zhipeng Jiang, Suixiang Gao, Wenguo Yang","doi":"10.1109/SKG.2010.54","DOIUrl":null,"url":null,"abstract":"The Multimedia Information Retrieval (MIR) in the P2P networks has been widely studied. In this paper, we propose a new comprehensive similarity function to calculate the similarity of peers in the P2P networks so as to classify these peers. We also apply the relevance feedback in the process of retrieval in order to improve the speed and accuracy of retrieval. In simulation, we compare our algorithm to the traditional method on the basis of the performance of the test which includes four types of thousands of files (text, image, video, and audio). The results show that our algorithm performs better on both speed and accuracy.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Multimedia Information Retrieval (MIR) in the P2P networks has been widely studied. In this paper, we propose a new comprehensive similarity function to calculate the similarity of peers in the P2P networks so as to classify these peers. We also apply the relevance feedback in the process of retrieval in order to improve the speed and accuracy of retrieval. In simulation, we compare our algorithm to the traditional method on the basis of the performance of the test which includes four types of thousands of files (text, image, video, and audio). The results show that our algorithm performs better on both speed and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于对等体分类的P2P网络多媒体信息检索算法
P2P网络中的多媒体信息检索(MIR)已经得到了广泛的研究。本文提出了一种新的综合相似度函数来计算P2P网络中对等点的相似度,从而对对等点进行分类。为了提高检索的速度和准确性,我们还在检索过程中应用了相关反馈。在模拟中,我们将我们的算法与传统方法进行比较,基于测试的性能,包括四种类型的数千个文件(文本,图像,视频和音频)。结果表明,该算法在速度和精度上都有较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Service Semantic Link Network Discovery Based on Markov Structure Optimization Research on Processes I/O Performance in Container-level Virtualization Research on Ontology Based Semantic Service Middleware within Spatial Information System Data Dependency Based Application Description Model in Grid and Its Usage in Scientific Computing Multi-faceted Learning Paths Recommendation Via Semantic Linked Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1