Congruences like Atkin’s for the partition function

S. Ahlgren, P. Allen, S. Tang
{"title":"Congruences like Atkin’s for the partition function","authors":"S. Ahlgren, P. Allen, S. Tang","doi":"10.1090/btran/128","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p(n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q cubed script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>Q</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p( Q^3 \\ell n+\\beta )\\equiv 0\\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\n <mml:semantics>\n <mml:mi>Q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are prime and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>31</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5\\leq \\ell \\leq 31</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>; these lie in two natural families distinguished by the square class of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus 24 beta left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>24</mml:mn>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1-24\\beta \\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In recent decades much work has been done to understand congruences of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q Superscript m Baseline script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>Q</mml:mi>\n <mml:mi>m</mml:mi>\n </mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p(Q^m\\ell n+\\beta )\\equiv 0\\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is now known that there are many such congruences when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\geq 4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, that such congruences are scarce (if they exist at all) when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 1 comma 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=1, 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and that for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such congruences exist only when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l equals 5 comma 7 comma 11\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>7</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>11</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell =5, 7, 11</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For congruences like Atkin’s (when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), more examples have been found for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>31</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5\\leq \\ell \\leq 31</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> but little else seems to be known.</p>\n\n<p>Here we use the theory of modular Galois representations to prove that for every prime <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than-or-equal-to 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>5</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell \\geq 5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there are infinitely many congruences like Atkin’s in the first natural family which he discovered and that for at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"17 slash 24\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>17</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>24</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">17/24</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> there are infinitely many congruences in the second family.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let p ( n ) p(n) be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form p ( Q 3 n + β ) 0 ( mod ) p( Q^3 \ell n+\beta )\equiv 0\pmod \ell where \ell and Q Q are prime and 5 31 5\leq \ell \leq 31 ; these lie in two natural families distinguished by the square class of 1 24 β ( mod ) 1-24\beta \pmod \ell . In recent decades much work has been done to understand congruences of the form p ( Q m n + β ) 0 ( mod ) p(Q^m\ell n+\beta )\equiv 0\pmod \ell . It is now known that there are many such congruences when m 4 m\geq 4 , that such congruences are scarce (if they exist at all) when m = 1 , 2 m=1, 2 , and that for m = 0 m=0 such congruences exist only when = 5 , 7 , 11 \ell =5, 7, 11 . For congruences like Atkin’s (when m = 3 m=3 ), more examples have been found for 5 31 5\leq \ell \leq 31 but little else seems to be known.

Here we use the theory of modular Galois representations to prove that for every prime 5 \ell \geq 5 , there are infinitely many congruences like Atkin’s in the first natural family which he discovered and that for at least 17 / 24 17/24 of the primes \ell there are infinitely many congruences in the second family.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
像配分函数的阿特金同余
设p(n) p(n)是普通配分函数。在20世纪60年代,阿特金发现了一些形式为p(q3ln + β)≡0 (mod r) p(Q^3)的同余例子 \ell n+\beta )\equiv 0\pmod \ell 其中,l \ell 和Q Q为素数,且5≤r≤31.5\leq \ell \leq 31;它们属于两个自然族,由1−24 β (mod r) 1-24的平方类区分\beta \pmod \ell . 在最近的几十年里,人们做了很多工作来理解形式为p(Q m _ n + β)≡0 (mod _ r) p(Q^m)的同余\ell n+\beta )\equiv 0\pmod \ell . 现在我们知道,当m≥4 m时,存在许多这样的同余\geq 4,当m= 1,2 m= 1,2时,这样的同余是稀缺的(如果它们存在的话),并且当m=0 m=0时,这样的同余仅在r = 5,7,11时存在 \ell = 5,7,11。对于类似Atkin的同余式(当m=3 m=3时),已经找到了更多的5≤r≤31.5的例子\leq \ell \leq 但其他方面似乎知之甚少。这里我们利用模伽罗瓦表示理论证明了对于每一个素数≥5 \ell \geq 5,在阿特金发现的第一个自然族中有无限多个像阿特金那样的同余至少17/24的素数是17/24 \ell 在第二族中有无限多个同余。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Duality theorems for curves over local fields Density of continuous functions in Sobolev spaces with applications to capacity 𝐶⁰-limits of Legendrian knots Multiple orthogonal polynomials, 𝑑-orthogonal polynomials, production matrices, and branched continued fractions Closed 𝑘-Schur Katalan functions as 𝐾-homology Schubert representatives of the affine Grassmannian
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1