{"title":"Congruences like Atkin’s for the partition function","authors":"S. Ahlgren, P. Allen, S. Tang","doi":"10.1090/btran/128","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis n right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>n</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p(n)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q cubed script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>Q</mml:mi>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p( Q^3 \\ell n+\\beta )\\equiv 0\\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Q\">\n <mml:semantics>\n <mml:mi>Q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are prime and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>31</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5\\leq \\ell \\leq 31</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>; these lie in two natural families distinguished by the square class of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 minus 24 beta left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>24</mml:mn>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">1-24\\beta \\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In recent decades much work has been done to understand congruences of the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p left-parenthesis upper Q Superscript m Baseline script l n plus beta right-parenthesis identical-to 0 left-parenthesis mod script l right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>Q</mml:mi>\n <mml:mi>m</mml:mi>\n </mml:msup>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mi>n</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mi>β<!-- β --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>≡<!-- ≡ --></mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mspace width=\"0.667em\" />\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>mod</mml:mi>\n <mml:mspace width=\"0.333em\" />\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p(Q^m\\ell n+\\beta )\\equiv 0\\pmod \\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. It is now known that there are many such congruences when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 4\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>4</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m\\geq 4</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, that such congruences are scarce (if they exist at all) when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 1 comma 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=1, 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and that for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> such congruences exist only when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l equals 5 comma 7 comma 11\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>5</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>7</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>11</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell =5, 7, 11</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. For congruences like Atkin’s (when <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m equals 3\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>m</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mn>3</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">m=3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>), more examples have been found for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"5 less-than-or-equal-to script l less-than-or-equal-to 31\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>5</mml:mn>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≤<!-- ≤ --></mml:mo>\n <mml:mn>31</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">5\\leq \\ell \\leq 31</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> but little else seems to be known.</p>\n\n<p>Here we use the theory of modular Galois representations to prove that for every prime <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l greater-than-or-equal-to 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>5</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\ell \\geq 5</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, there are infinitely many congruences like Atkin’s in the first natural family which he discovered and that for at least <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"17 slash 24\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>17</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>24</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">17/24</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the primes <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\">\n <mml:semantics>\n <mml:mi>ℓ<!-- ℓ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> there are infinitely many congruences in the second family.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Let p(n)p(n) be the ordinary partition function. In the 1960s Atkin found a number of examples of congruences of the form p(Q3ℓn+β)≡0(modℓ)p( Q^3 \ell n+\beta )\equiv 0\pmod \ell where ℓ\ell and QQ are prime and 5≤ℓ≤315\leq \ell \leq 31; these lie in two natural families distinguished by the square class of 1−24β(modℓ)1-24\beta \pmod \ell. In recent decades much work has been done to understand congruences of the form p(Qmℓn+β)≡0(modℓ)p(Q^m\ell n+\beta )\equiv 0\pmod \ell. It is now known that there are many such congruences when m≥4m\geq 4, that such congruences are scarce (if they exist at all) when m=1,2m=1, 2, and that for m=0m=0 such congruences exist only when ℓ=5,7,11\ell =5, 7, 11. For congruences like Atkin’s (when m=3m=3), more examples have been found for 5≤ℓ≤315\leq \ell \leq 31 but little else seems to be known.
Here we use the theory of modular Galois representations to prove that for every prime ℓ≥5\ell \geq 5, there are infinitely many congruences like Atkin’s in the first natural family which he discovered and that for at least 17/2417/24 of the primes ℓ\ell there are infinitely many congruences in the second family.