A Self-Adjusting Approach for Temporal Dropout Prediction of E-Learning Students

C. Siebra, Ramon Nóbrega dos Santos, N. Lino
{"title":"A Self-Adjusting Approach for Temporal Dropout Prediction of E-Learning Students","authors":"C. Siebra, Ramon Nóbrega dos Santos, N. Lino","doi":"10.4018/ijdet.2020040102","DOIUrl":null,"url":null,"abstract":"This work proposes a dropout prediction approach that is able to self-adjust their outcomes at any moment of a degree program timeline. To that end, a rule-based classification technique was used to identify courses, grade thresholds and other attributes that have a high influence on the dropout behavior. This approach, which is generic so that it can be applied to any distance learning degree program, returns different rules that indicate how the predictions are adjusted along with academic terms. Experiments were carried out using four rule-based classification algorithms: JRip, OneR, PART and Ridor. The outcomes show that this approach presents better accuracy according to the progress of students, mainly when the JRip and PART algorithms are used. Furthermore, the use of this method enabled the generation of rules that stress the factors that mainly affect the dropout phenomenon at different degree moments.","PeriodicalId":298910,"journal":{"name":"Int. J. Distance Educ. Technol.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distance Educ. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdet.2020040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work proposes a dropout prediction approach that is able to self-adjust their outcomes at any moment of a degree program timeline. To that end, a rule-based classification technique was used to identify courses, grade thresholds and other attributes that have a high influence on the dropout behavior. This approach, which is generic so that it can be applied to any distance learning degree program, returns different rules that indicate how the predictions are adjusted along with academic terms. Experiments were carried out using four rule-based classification algorithms: JRip, OneR, PART and Ridor. The outcomes show that this approach presents better accuracy according to the progress of students, mainly when the JRip and PART algorithms are used. Furthermore, the use of this method enabled the generation of rules that stress the factors that mainly affect the dropout phenomenon at different degree moments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E-Learning学生时间辍学预测的自调整方法
这项工作提出了一种辍学预测方法,能够在学位课程时间表的任何时刻自我调整他们的结果。为此,使用基于规则的分类技术来识别对退学行为有很大影响的课程、成绩阈值和其他属性。这种方法是通用的,因此可以应用于任何远程学习学位课程,它返回不同的规则,指示预测如何随着学术术语进行调整。实验采用JRip、OneR、PART和Ridor四种基于规则的分类算法。结果表明,根据学生的进度,该方法具有更好的精度,特别是在使用JRip和PART算法时。此外,使用该方法可以生成规则,强调在不同程度时刻主要影响辍学现象的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dialogue-Like Video Created From a Monologue Lecture Video Provides Better Learning Experience Research on the Impact of Information Literacy on the Creativity of Foreign Language Teachers in Chinese Universities Under the Background of Big Data Exploration on Construction of Mobile Communication Experimental Teaching Based on Virtual-Real Combination A Research on Online Teaching Behavior of Chinese Local University Teachers Based on Cluster Analysis Effectiveness and Evaluation of Online and Offline Blended Learning for an Electronic Design Practical Training Course
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1