An Efficient Strategy with High Availability for Dynamic Provisioning of Access Points in Large-Scale Wireless Networks

Matheus B. de A. Rodrigues, Ana Carolina R. Mendes, Marcos Paulo C. de Mendonça, G. R. Carrara, Luiz Claudio S. Magalhães, C. Albuquerque, Dianne S. V. Medeiros, D. M. F. Mattos
{"title":"An Efficient Strategy with High Availability for Dynamic Provisioning of Access Points in Large-Scale Wireless Networks","authors":"Matheus B. de A. Rodrigues, Ana Carolina R. Mendes, Marcos Paulo C. de Mendonça, G. R. Carrara, Luiz Claudio S. Magalhães, C. Albuquerque, Dianne S. V. Medeiros, D. M. F. Mattos","doi":"10.1109/ciot53061.2022.9766688","DOIUrl":null,"url":null,"abstract":"The dynamical users' association with wireless access points and the requirement for maximum network coverage foster the challenge of providing energy efficiency alongside network availability for large-scale wireless networks. This paper proposes an access-point provisioning strategy based on a multi-objective optimization heuristic. The heuristic purposes are maximizing coverage, ensuring high network availability, and minimizing the number of active access points, while improving energy efficiency. We evaluate our proposal by simulating a connected component of the Universidade Federal Fluminense (UFF - Brazil) wireless network, comprising 363 access points in a university campus. The simulation considers actual flows and features of users' association to the network. The results show that the best performing strategy is a greedy heuristic, which activates access points with the most significant number of potential neighbors that are not active. Our proposal implies 2% of unserved users while activating only 23% of the access points, ensuring high availability and energy efficiency.","PeriodicalId":180813,"journal":{"name":"2022 5th Conference on Cloud and Internet of Things (CIoT)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th Conference on Cloud and Internet of Things (CIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ciot53061.2022.9766688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The dynamical users' association with wireless access points and the requirement for maximum network coverage foster the challenge of providing energy efficiency alongside network availability for large-scale wireless networks. This paper proposes an access-point provisioning strategy based on a multi-objective optimization heuristic. The heuristic purposes are maximizing coverage, ensuring high network availability, and minimizing the number of active access points, while improving energy efficiency. We evaluate our proposal by simulating a connected component of the Universidade Federal Fluminense (UFF - Brazil) wireless network, comprising 363 access points in a university campus. The simulation considers actual flows and features of users' association to the network. The results show that the best performing strategy is a greedy heuristic, which activates access points with the most significant number of potential neighbors that are not active. Our proposal implies 2% of unserved users while activating only 23% of the access points, ensuring high availability and energy efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模无线网络中接入点动态配置的高效、高可用性策略
动态用户与无线接入点的关联以及对最大网络覆盖范围的要求,为大规模无线网络提供能源效率和网络可用性带来了挑战。提出了一种基于多目标优化启发式的接入点配置策略。启发式目的是最大化覆盖范围,确保高网络可用性,最小化活动接入点的数量,同时提高能源效率。我们通过模拟联邦弗鲁米嫩塞大学(UFF -巴西)无线网络的连接组件来评估我们的建议,该网络由大学校园中的363个接入点组成。仿真考虑了用户与网络关联的实际流程和特征。结果表明,性能最好的策略是贪心启发式策略,它激活具有最显著数量的未激活的潜在邻居的接入点。我们的建议意味着2%的未服务用户,而仅激活23%的接入点,确保高可用性和能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulating Distributed Wireless Sensor Networks for Edge-AI MPaS: A Micro-services based Publish/Subscribe Middleware System Model for IoT Towards a Cloud-Native 5G Service Chaining for IoT and Video Analytics in Smart Campus Transforming Deep Learning Models for Resource-Efficient Activity Recognition on Mobile Devices Cache Optimization Strategy for Mobile Edge Computing in Maritime IoT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1