Modeling MME Residence Time in LTE based Cellular Networks

Ushasi Ghosh, Pranay Agarwal, Abhinav Kumar
{"title":"Modeling MME Residence Time in LTE based Cellular Networks","authors":"Ushasi Ghosh, Pranay Agarwal, Abhinav Kumar","doi":"10.1109/NCC.2018.8600089","DOIUrl":null,"url":null,"abstract":"In a long term evolution (LTE) based cellular network, the mobility management entity (MME) is responsible for non-data signaling between user equipment of multiple base stations in a geographic region and the core network. Thus, the MME residence time (MRT) is a key parameter required to improve the performance of an LTE based cellular network. The impact of various mobility and network scenarios on cell residence time has been studied in the literature. However, the MRT has not been suitably modeled. Hence, in this paper, we consider diverse mobility and network scenarios. For these scenarios, we model the MRT using various probability distributions. We analyze and evaluate the statistical performance of these distributions in modeling MRT. Finally, we show through exhaustive simulations that the Lognormal and Generalized Pareto distributions are best suited to model the MRT for specific network and mobility scenarios.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a long term evolution (LTE) based cellular network, the mobility management entity (MME) is responsible for non-data signaling between user equipment of multiple base stations in a geographic region and the core network. Thus, the MME residence time (MRT) is a key parameter required to improve the performance of an LTE based cellular network. The impact of various mobility and network scenarios on cell residence time has been studied in the literature. However, the MRT has not been suitably modeled. Hence, in this paper, we consider diverse mobility and network scenarios. For these scenarios, we model the MRT using various probability distributions. We analyze and evaluate the statistical performance of these distributions in modeling MRT. Finally, we show through exhaustive simulations that the Lognormal and Generalized Pareto distributions are best suited to model the MRT for specific network and mobility scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LTE的蜂窝网络中MME停留时间建模
在基于长期演进(LTE)的蜂窝网络中,移动管理实体(MME)负责一个地理区域内多个基站的用户设备与核心网之间的非数据信令。因此,MME停留时间(MRT)是提高基于LTE的蜂窝网络性能所需的关键参数。文献中已经研究了各种移动性和网络场景对细胞停留时间的影响。然而,捷运还没有得到合适的模型。因此,在本文中,我们考虑了不同的移动性和网络场景。对于这些场景,我们使用各种概率分布对MRT进行建模。我们分析和评估这些分布在MRT建模中的统计性能。最后,我们通过详尽的模拟表明,对数正态分布和广义帕累托分布最适合为特定的网络和移动场景建立MRT模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining the Generalized Hamming Weight Hierarchy of the Binary Projective Reed-Muller Code A Cognitive Opportunistic Fractional Frequency Reuse Scheme for OFDMA Uplinks Caching Policies for Transient Data Grouping Subarray for Robust Estimation of Direction of Arrival Universal Compression of a Piecewise Stationary Source Through Sequential Change Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1