Sparse matrix computations on manycore GPU’s

M. Garland
{"title":"Sparse matrix computations on manycore GPU’s","authors":"M. Garland","doi":"10.1145/1391469.1391473","DOIUrl":null,"url":null,"abstract":"Modern microprocessors are becoming increasingly parallel devices, and GPUs are at the leading edge of this trend. Designing parallel algorithms for manycore chips like the GPU can present interesting challenges, particularly for computations on sparse data structures. One particularly common example is the collection of sparse matrix solvers and combinatorial graph algorithms that form the core of many physical simulation techniques. Although seemingly irregular, these operations can often be implemented with data parallel operations that map very well to massively parallel processors.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Modern microprocessors are becoming increasingly parallel devices, and GPUs are at the leading edge of this trend. Designing parallel algorithms for manycore chips like the GPU can present interesting challenges, particularly for computations on sparse data structures. One particularly common example is the collection of sparse matrix solvers and combinatorial graph algorithms that form the core of many physical simulation techniques. Although seemingly irregular, these operations can often be implemented with data parallel operations that map very well to massively parallel processors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核GPU上的稀疏矩阵计算
现代微处理器正日益成为并行设备,而gpu处于这一趋势的前沿。为像GPU这样的多核芯片设计并行算法可能会带来有趣的挑战,特别是对于稀疏数据结构的计算。一个特别常见的例子是稀疏矩阵求解器和组合图算法的集合,它们构成了许多物理模拟技术的核心。尽管这些操作看似不规则,但通常可以通过数据并行操作来实现,这些操作可以很好地映射到大规模并行处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic Scratch Pad Memory management tool and MPEG-4 encoder case study Standard interfaces in mobile terminals — increasing the efficiency of device design and accelerating innovation Concurrent topology and routing optimization in automotive network integration Keeping hot chips cool: Are IC thermal problems hot air? Customizing computation accelerators for extensible multi-issue processors with effective optimization techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1