Compressive-Sensing-Based Antenna Array Calibration With Manifold Separation Technique

Tianhan Tan, Daolin Chen, Yisong Xue, Jie Zhuang
{"title":"Compressive-Sensing-Based Antenna Array Calibration With Manifold Separation Technique","authors":"Tianhan Tan, Daolin Chen, Yisong Xue, Jie Zhuang","doi":"10.1109/ICCC51575.2020.9345107","DOIUrl":null,"url":null,"abstract":"Array calibration is the guarantee of various array signal processing algorithms. The conventional calibration methods need a large amount of sampling points and calculations. In this paper, we propose an efficient method based on the manifold separation technique (MST) and compressive sensing (CS) to simplify the calibration process. We use the MST to convert the manifold matrix into the product of the sampling matrix and the 2D discrete Fourier transform base. Then by using the CS, we can reduce the required numbe of the measurement points. The simulation results demonstrate that the proposed method achieves the purpose of calibration with less random measurement data.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Array calibration is the guarantee of various array signal processing algorithms. The conventional calibration methods need a large amount of sampling points and calculations. In this paper, we propose an efficient method based on the manifold separation technique (MST) and compressive sensing (CS) to simplify the calibration process. We use the MST to convert the manifold matrix into the product of the sampling matrix and the 2D discrete Fourier transform base. Then by using the CS, we can reduce the required numbe of the measurement points. The simulation results demonstrate that the proposed method achieves the purpose of calibration with less random measurement data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于压缩传感的流形分离技术天线阵列标定
阵列标定是各种阵列信号处理算法的保证。传统的校准方法需要大量的采样点和计算量。在本文中,我们提出了一种基于流形分离技术(MST)和压缩感知(CS)的有效方法来简化校准过程。我们使用MST将流形矩阵转换成采样矩阵和二维离散傅里叶变换基的乘积。然后,通过使用CS,我们可以减少所需的测量点数量。仿真结果表明,该方法在较少随机测量数据的情况下达到了标定的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Safe and Stable Timing Method over Air Interface Based on Multi-Base Station Cooperation Peak to Average Power Ratio (PAPR) Mitigation for Underwater Acoustic OFDM System by Using an Efficient Hybridization Technique Monocular Visual-Inertial Odometry Based on Point and Line Features Block Halftoning for Size-Invariant Visual Cryptography Based on Two-Dimensional Lattices Airborne STAP with Unknown Mutual Coupling for Coprime Sampling Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1