Texture-based characterization of arterialization in simulated MRI of hypervascularized liver tumors

M. Mescam, M. Kretowski, J. Bézy-Wendling
{"title":"Texture-based characterization of arterialization in simulated MRI of hypervascularized liver tumors","authors":"M. Mescam, M. Kretowski, J. Bézy-Wendling","doi":"10.1109/ISBI.2009.5192991","DOIUrl":null,"url":null,"abstract":"The use of quantitative imaging for the characterization of hepatic tumors in MRI can improve the diagnosis and therefore the treatment. However, image parameters remain difficult to interpret because they result from a mixture of complex processes related to pathophysiology and to acquisition. In particular, the lesion arterialization is prominent in the resulting contrast between normal and tumoral tissues in contrast-enhanced images. In order to identify this influence, we propose a multiscale model of liver dynamic contrast-enhanced MRI, consisting of a model of the organ coupled with a model of the image acquisition. A sensitivity analysis of the model to the arterial flow has enabled us to emphasize the existence of relationships between texture parameters in simulated arterial-phase MR images, and the arterialization phenomena involved in carcinogenesis.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5192991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of quantitative imaging for the characterization of hepatic tumors in MRI can improve the diagnosis and therefore the treatment. However, image parameters remain difficult to interpret because they result from a mixture of complex processes related to pathophysiology and to acquisition. In particular, the lesion arterialization is prominent in the resulting contrast between normal and tumoral tissues in contrast-enhanced images. In order to identify this influence, we propose a multiscale model of liver dynamic contrast-enhanced MRI, consisting of a model of the organ coupled with a model of the image acquisition. A sensitivity analysis of the model to the arterial flow has enabled us to emphasize the existence of relationships between texture parameters in simulated arterial-phase MR images, and the arterialization phenomena involved in carcinogenesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟高血管化肝脏肿瘤MRI中动脉化的纹理特征
在MRI中使用定量成像来表征肝脏肿瘤可以提高诊断,从而提高治疗。然而,图像参数仍然难以解释,因为它们是由与病理生理学和采集相关的复杂过程混合产生的。特别是,在对比增强图像中,病变动脉化在正常组织和肿瘤组织的对比中是突出的。为了确定这种影响,我们提出了一个肝脏动态对比增强MRI的多尺度模型,由器官模型和图像采集模型组成。该模型对动脉血流的敏感性分析使我们能够强调模拟动脉期MR图像中纹理参数与癌变中动脉化现象之间存在的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1