{"title":"Overview","authors":"L. Tu","doi":"10.23943/princeton/9780691191751.003.0001","DOIUrl":null,"url":null,"abstract":"This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691191751.003.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.