Automated prediction of Heart disease using optimized machine learning techniques

Lama A. Alqahtani, Hanadi M. Alotaibi, Irfan Ullah Khan, N. Aslam
{"title":"Automated prediction of Heart disease using optimized machine learning techniques","authors":"Lama A. Alqahtani, Hanadi M. Alotaibi, Irfan Ullah Khan, N. Aslam","doi":"10.1109/UEMCON51285.2020.9298051","DOIUrl":null,"url":null,"abstract":"Nowadays, heart disease is considered as one of the most significant factors of death. Several attempts have been made over the last few years to automate the diagnosis of cardiac disease. Nevertheless, the significance of machine learning has already been proved from literature studies. In our study, several machine learning algorithms such as Naive Bayes (NB), Multi-Layer Perceptron (MLP), Random Forest (RF) and Decision Tree (DT) will be compared to predict presence of heart disease using UCI data set. Several preprocessing techniques will be applied; brute force technique will be used for feature selection. Grid search mechanism will be used for parameter optimization. Experiments showed that Random Forest achieved the highest performance with the accuracy of 0.93 and AUC of 0.95.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, heart disease is considered as one of the most significant factors of death. Several attempts have been made over the last few years to automate the diagnosis of cardiac disease. Nevertheless, the significance of machine learning has already been proved from literature studies. In our study, several machine learning algorithms such as Naive Bayes (NB), Multi-Layer Perceptron (MLP), Random Forest (RF) and Decision Tree (DT) will be compared to predict presence of heart disease using UCI data set. Several preprocessing techniques will be applied; brute force technique will be used for feature selection. Grid search mechanism will be used for parameter optimization. Experiments showed that Random Forest achieved the highest performance with the accuracy of 0.93 and AUC of 0.95.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用优化的机器学习技术自动预测心脏病
如今,心脏病被认为是最重要的死亡因素之一。在过去的几年中,已经进行了几次尝试,以实现心脏病的自动诊断。尽管如此,机器学习的重要性已经从文献研究中得到了证明。在我们的研究中,将比较几种机器学习算法,如朴素贝叶斯(NB)、多层感知器(MLP)、随机森林(RF)和决策树(DT),以使用UCI数据集预测心脏病的存在。将应用几种预处理技术;将使用蛮力技术进行特征选择。采用网格搜索机制进行参数优化。实验表明Random Forest的准确率为0.93,AUC为0.95,达到了最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Agile Edge Classification of Ocean Sounds EMG-based Hand Gesture Recognition by Deep Time-frequency Learning for Assisted Living & Rehabilitation A High Security Signature Algorithm Based on Kerberos for REST-style Cloud Storage Service A Comparison of Blockchain-Based Wireless Sensor Network Protocols Computer Vision based License Plate Detection for Automated Vehicle Parking Management System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1