{"title":"Absence of isolated nodes in inhomogeneous random key graphs","authors":"Osman Yağan","doi":"10.1109/ALLERTON.2015.7447143","DOIUrl":null,"url":null,"abstract":"We introduce a new random key predistribution scheme for securing heterogeneous wireless sensor networks. Each of the n sensors in the network is classified into r classes according to some probability distribution μ = {μ1, ..., μr}. Before deployment, a class i sensor is assigned Ki cryptographic keys that are selected uniformly at random from a common pool of P keys, for each i = 1, ..., r. Once deployed, a pair of sensors can establish a secure communication channel if and only if they have a key in common. We model the topology of this network by an inhomogeneous random key graph. We establish scaling conditions on the parameters P and {K1, ..., Kr} so that the this graph has no isolated nodes with high probability. The result is given in the form of a zero-one law with the number of sensors n growing unboundedly large. An analogous result is also conjectured for the property of graph connectivity.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We introduce a new random key predistribution scheme for securing heterogeneous wireless sensor networks. Each of the n sensors in the network is classified into r classes according to some probability distribution μ = {μ1, ..., μr}. Before deployment, a class i sensor is assigned Ki cryptographic keys that are selected uniformly at random from a common pool of P keys, for each i = 1, ..., r. Once deployed, a pair of sensors can establish a secure communication channel if and only if they have a key in common. We model the topology of this network by an inhomogeneous random key graph. We establish scaling conditions on the parameters P and {K1, ..., Kr} so that the this graph has no isolated nodes with high probability. The result is given in the form of a zero-one law with the number of sensors n growing unboundedly large. An analogous result is also conjectured for the property of graph connectivity.