Deep learning with maximal figure-of-merit cost to advance multi-label speech attribute detection

Ivan Kukanov, Ville Hautamäki, S. Siniscalchi, Kehuang Li
{"title":"Deep learning with maximal figure-of-merit cost to advance multi-label speech attribute detection","authors":"Ivan Kukanov, Ville Hautamäki, S. Siniscalchi, Kehuang Li","doi":"10.1109/SLT.2016.7846308","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in boosting speech attribute detection by formulating it as a multi-label classification task, and deep neural networks (DNNs) are used to design speech attribute detectors. A straightforward way to tackle the speech attribute detection task is to estimate DNN parameters using the mean squared error (MSE) loss function and employ a sigmoid function in the DNN output nodes. A more principled way is nonetheless to incorporate the micro-F1 measure, which is a widely used metric in the multi-label classification, into the DNN loss function to directly improve the metric of interest at training time. Micro-F1 is not differentiable, yet we overcome such a problem by casting our task under the maximal figure-of-merit (MFoM) learning framework. The results demonstrate that our MFoM approach consistently outperforms the baseline systems.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this work, we are interested in boosting speech attribute detection by formulating it as a multi-label classification task, and deep neural networks (DNNs) are used to design speech attribute detectors. A straightforward way to tackle the speech attribute detection task is to estimate DNN parameters using the mean squared error (MSE) loss function and employ a sigmoid function in the DNN output nodes. A more principled way is nonetheless to incorporate the micro-F1 measure, which is a widely used metric in the multi-label classification, into the DNN loss function to directly improve the metric of interest at training time. Micro-F1 is not differentiable, yet we overcome such a problem by casting our task under the maximal figure-of-merit (MFoM) learning framework. The results demonstrate that our MFoM approach consistently outperforms the baseline systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优值代价的深度学习推进多标签语音属性检测
在这项工作中,我们感兴趣的是通过将语音属性检测制定为多标签分类任务来增强语音属性检测,并使用深度神经网络(dnn)来设计语音属性检测器。解决语音属性检测任务的一种直接方法是使用均方误差(MSE)损失函数估计DNN参数,并在DNN输出节点中使用sigmoid函数。然而,一种更有原则的方法是将微f1度量(这是多标签分类中广泛使用的度量)纳入DNN损失函数中,以直接改进训练时的感兴趣度量。Micro-F1是不可微的,但我们通过将任务置于最大价值图(MFoM)学习框架下来克服这一问题。结果表明,我们的MFoM方法始终优于基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Further optimisations of constant Q cepstral processing for integrated utterance and text-dependent speaker verification Learning dialogue dynamics with the method of moments A study of speech distortion conditions in real scenarios for speech processing applications Comparing speaker independent and speaker adapted classification for word prominence detection Influence of corpus size and content on the perceptual quality of a unit selection MaryTTS voice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1