Ivan Kukanov, Ville Hautamäki, S. Siniscalchi, Kehuang Li
{"title":"Deep learning with maximal figure-of-merit cost to advance multi-label speech attribute detection","authors":"Ivan Kukanov, Ville Hautamäki, S. Siniscalchi, Kehuang Li","doi":"10.1109/SLT.2016.7846308","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in boosting speech attribute detection by formulating it as a multi-label classification task, and deep neural networks (DNNs) are used to design speech attribute detectors. A straightforward way to tackle the speech attribute detection task is to estimate DNN parameters using the mean squared error (MSE) loss function and employ a sigmoid function in the DNN output nodes. A more principled way is nonetheless to incorporate the micro-F1 measure, which is a widely used metric in the multi-label classification, into the DNN loss function to directly improve the metric of interest at training time. Micro-F1 is not differentiable, yet we overcome such a problem by casting our task under the maximal figure-of-merit (MFoM) learning framework. The results demonstrate that our MFoM approach consistently outperforms the baseline systems.","PeriodicalId":281635,"journal":{"name":"2016 IEEE Spoken Language Technology Workshop (SLT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2016.7846308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this work, we are interested in boosting speech attribute detection by formulating it as a multi-label classification task, and deep neural networks (DNNs) are used to design speech attribute detectors. A straightforward way to tackle the speech attribute detection task is to estimate DNN parameters using the mean squared error (MSE) loss function and employ a sigmoid function in the DNN output nodes. A more principled way is nonetheless to incorporate the micro-F1 measure, which is a widely used metric in the multi-label classification, into the DNN loss function to directly improve the metric of interest at training time. Micro-F1 is not differentiable, yet we overcome such a problem by casting our task under the maximal figure-of-merit (MFoM) learning framework. The results demonstrate that our MFoM approach consistently outperforms the baseline systems.