Hongda Tian, W. Li, P. Ogunbona, D. Nguyen, Ce Zhan
{"title":"Smoke detection in videos using Non-Redundant Local Binary Pattern-based features","authors":"Hongda Tian, W. Li, P. Ogunbona, D. Nguyen, Ce Zhan","doi":"10.1109/MMSP.2011.6093844","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and low complexity method for real-time video-based smoke detection. As a local texture operator, Non-Redundant Local Binary Pattern (NRLBP) is more discriminative and robust to illumination changes in comparison with original Local Binary Pattern (LBP), thus is employed to encode the appearance information of smoke. Non-Redundant Local Motion Binary Pattern (NRLMBP), which is computed on the difference image of consecutive frames, is introduced to capture the motion information of smoke. Experimental results show that NRLBP outperforms the original LBP in the smoke detection task. Furthermore, the combination of NRLBP and NRLMBP, which can be considered as a spatial-temporal descriptor of smoke, can lead to remarkable improvement on detection performance.","PeriodicalId":214459,"journal":{"name":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 13th International Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2011.6093844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
This paper presents a novel and low complexity method for real-time video-based smoke detection. As a local texture operator, Non-Redundant Local Binary Pattern (NRLBP) is more discriminative and robust to illumination changes in comparison with original Local Binary Pattern (LBP), thus is employed to encode the appearance information of smoke. Non-Redundant Local Motion Binary Pattern (NRLMBP), which is computed on the difference image of consecutive frames, is introduced to capture the motion information of smoke. Experimental results show that NRLBP outperforms the original LBP in the smoke detection task. Furthermore, the combination of NRLBP and NRLMBP, which can be considered as a spatial-temporal descriptor of smoke, can lead to remarkable improvement on detection performance.