Comparison of Various Smoothing Parameter Techniques for Forecasting Power System States

S. Kundu, M. Alam, B. K. S. Roy, S. S. Thakur
{"title":"Comparison of Various Smoothing Parameter Techniques for Forecasting Power System States","authors":"S. Kundu, M. Alam, B. K. S. Roy, S. S. Thakur","doi":"10.1109/SPIN48934.2020.9071292","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of various smoothing parameter techniques for power system state forecasting. The time behavior of the power system states have been forecasted through several smoothing parameter techniques i.e. Brown’s one parameter method, Three parameter winter, Three parameter multiplicative method and Holt’s two-parameter method. The filtering problem has been resolved through a novel approach of Dynamic State estimation (DSE) relied on linear Kalman filter algorithm developed through optimally placed PMU measurements. Optimal location of PMUs has been obtained utilizing Integer linear programming (ILP) based approach. The proposed approach of DSE has been applied to IEEE 57, IEEE 118 and an Indian practical system i.e. 38 bus system of Damodar Valley Corporation (DVC). Among the various prediction techniques, Brown’s one parameter method provides better prediction compared to other forecasting methods.","PeriodicalId":126759,"journal":{"name":"2020 7th International Conference on Signal Processing and Integrated Networks (SPIN)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th International Conference on Signal Processing and Integrated Networks (SPIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPIN48934.2020.9071292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a comparison of various smoothing parameter techniques for power system state forecasting. The time behavior of the power system states have been forecasted through several smoothing parameter techniques i.e. Brown’s one parameter method, Three parameter winter, Three parameter multiplicative method and Holt’s two-parameter method. The filtering problem has been resolved through a novel approach of Dynamic State estimation (DSE) relied on linear Kalman filter algorithm developed through optimally placed PMU measurements. Optimal location of PMUs has been obtained utilizing Integer linear programming (ILP) based approach. The proposed approach of DSE has been applied to IEEE 57, IEEE 118 and an Indian practical system i.e. 38 bus system of Damodar Valley Corporation (DVC). Among the various prediction techniques, Brown’s one parameter method provides better prediction compared to other forecasting methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电力系统状态预测的各种平滑参数技术比较
本文对各种用于电力系统状态预测的平滑参数技术进行了比较。通过Brown的单参数法、三参数冬季法、三参数乘法法和Holt的双参数法等光滑参数技术对电力系统状态的时间行为进行了预测。滤波问题通过一种基于线性卡尔曼滤波算法的动态估计(DSE)的新方法得到解决,该方法是通过PMU的最佳放置测量而开发的。利用基于整数线性规划(ILP)的方法得到pmu的最优位置。该方法已应用于ieee57、ieee118和印度实际系统,即达摩达山谷公司(DVC)的38总线系统。在各种预测技术中,Brown的单参数方法比其他预测方法提供了更好的预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Priority Queue Based Real-time Task Scheduling in Virtualized Cloud Environment Eigen Vectors based Rotation Invariant Multi-Object Deep Detector Vedic-Based Squaring Circuit Using Parallel Prefix Adders Retinal Image Enhancement Using Edge-based Texture Histogram Equalization Abnormal Moving Speed Detection Using Combination of Kernel Density Estimator and DBSCAN for Coastal Surveillance Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1