Cascaded Denoising Convolutional Auto-Encoders for Automatic Recovery of Missing Time Series Data

Yuanyi Chen, Yubin Wang, Qianmei Yang
{"title":"Cascaded Denoising Convolutional Auto-Encoders for Automatic Recovery of Missing Time Series Data","authors":"Yuanyi Chen, Yubin Wang, Qianmei Yang","doi":"10.1109/DCABES50732.2020.00080","DOIUrl":null,"url":null,"abstract":"This paper proposes a kind of supervised cascaded denoising convolutional auto-encoders (CDCAE), aiming to accurately recover the missing load data in electric power system. The one-dimensional load data are reshaped as two-dimensional image for data enhancement, which enables the convolutional neural network (CNN) to understand the semantics of load data. Numerical results in comparison with similar day filling (SDF) clearly validate the effectiveness of the proposed CDCAE in accuracy.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a kind of supervised cascaded denoising convolutional auto-encoders (CDCAE), aiming to accurately recover the missing load data in electric power system. The one-dimensional load data are reshaped as two-dimensional image for data enhancement, which enables the convolutional neural network (CNN) to understand the semantics of load data. Numerical results in comparison with similar day filling (SDF) clearly validate the effectiveness of the proposed CDCAE in accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
级联去噪卷积自编码器用于丢失时间序列数据的自动恢复
本文提出了一种监督级联降噪卷积自编码器(CDCAE),旨在准确地恢复电力系统中丢失的负荷数据。将一维载荷数据重构为二维图像进行数据增强,使卷积神经网络(CNN)能够理解载荷数据的语义。数值结果与相似日填充(SDF)的比较清楚地验证了所提出的CDCAE在精度上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visible and infrared image fusion based on visual saliency detection Sponsors DCABES 2020 Computer Vision based Automatic Power Equipment Condition Monitoring and Maintenance: A Brief Review Heuristic Moment Matching based Scenario Generation for Regional Energy Network Planning considering the Stochastic Generation and Demands Some New Attempts to Process Biological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1