{"title":"Principal Gabor filters for face recognition","authors":"V. Štruc, Rok Gajsek, N. Pavesic","doi":"10.1109/BTAS.2009.5339020","DOIUrl":null,"url":null,"abstract":"Gabor filters have proven themselves to be a powerful tool for facial feature extraction. An abundance of recognition techniques presented in the literature exploits these filters to achieve robust face recognition. However, while exhibiting desirable properties, such as orientational selectivity or spatial locality, Gabor filters have also some shortcomings which crucially affect the characteristics and size of the Gabor representation of a given face pattern. Amongst these shortcomings the fact that the filters are not orthogonal one to another and are, hence, correlated is probably the most important. This makes the information contained in the Gabor face representation redundant and also affects the size of the representation. To overcome this problem we propose in this paper to employ orthonormal linear combinations of the original Gabor filters rather than the filters themselves for deriving the Gabor face representation. The filters, named principal Gabor filters for the fact that they are computed by means of principal component analysis, are assessed in face recognition experiments performed on the XM2VTS and YaleB databases, where encouraging results are achieved.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Gabor filters have proven themselves to be a powerful tool for facial feature extraction. An abundance of recognition techniques presented in the literature exploits these filters to achieve robust face recognition. However, while exhibiting desirable properties, such as orientational selectivity or spatial locality, Gabor filters have also some shortcomings which crucially affect the characteristics and size of the Gabor representation of a given face pattern. Amongst these shortcomings the fact that the filters are not orthogonal one to another and are, hence, correlated is probably the most important. This makes the information contained in the Gabor face representation redundant and also affects the size of the representation. To overcome this problem we propose in this paper to employ orthonormal linear combinations of the original Gabor filters rather than the filters themselves for deriving the Gabor face representation. The filters, named principal Gabor filters for the fact that they are computed by means of principal component analysis, are assessed in face recognition experiments performed on the XM2VTS and YaleB databases, where encouraging results are achieved.