A deep attention-driven model to forecast solar irradiance

Abdelkader Dairi, F. Harrou, Ying Sun
{"title":"A deep attention-driven model to forecast solar irradiance","authors":"Abdelkader Dairi, F. Harrou, Ying Sun","doi":"10.1109/INDIN45523.2021.9557405","DOIUrl":null,"url":null,"abstract":"Accurately forecasting solar irradiance is indispensable in optimally managing and designing photovoltaic systems. It enables the efficient integration of photovoltaic systems in the smart grid. This paper introduces an innovative deep attention-driven model for solar irradiance forecasting. Notably, an extended version of the variational autoencoder (VAE) is introduced by amalgamating the desirable characteristics of the bidirectional LSTM (BiLSTM) and attention mechanism with the VAE model. Specifically, the introduced approach enables the conventional VAE’s ability to model temporal dependencies by incorporating BiLSTM at the VAE’s encoder side to better extract and learn temporal dependencies embed on the solar irradiance concentration measurements. In addition, the self-attention mechanism is embedded in the VAE’s encoder side following the BiLSTM to highlight pertinent features. The performance of the proposed model is evaluated through comparisons with the recurrent neural network (RNN), gated recurrent unit (GRU), LSTM, and BiLSTM. Measurements of solar irradiance in the US and Turkey are used to evaluate the investigated models. Results confirm the superior performance of the proposed model for solar irradiance forecasting over the other models (i.e., RNN, GRU, LSTM, and BiLSTM).","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Accurately forecasting solar irradiance is indispensable in optimally managing and designing photovoltaic systems. It enables the efficient integration of photovoltaic systems in the smart grid. This paper introduces an innovative deep attention-driven model for solar irradiance forecasting. Notably, an extended version of the variational autoencoder (VAE) is introduced by amalgamating the desirable characteristics of the bidirectional LSTM (BiLSTM) and attention mechanism with the VAE model. Specifically, the introduced approach enables the conventional VAE’s ability to model temporal dependencies by incorporating BiLSTM at the VAE’s encoder side to better extract and learn temporal dependencies embed on the solar irradiance concentration measurements. In addition, the self-attention mechanism is embedded in the VAE’s encoder side following the BiLSTM to highlight pertinent features. The performance of the proposed model is evaluated through comparisons with the recurrent neural network (RNN), gated recurrent unit (GRU), LSTM, and BiLSTM. Measurements of solar irradiance in the US and Turkey are used to evaluate the investigated models. Results confirm the superior performance of the proposed model for solar irradiance forecasting over the other models (i.e., RNN, GRU, LSTM, and BiLSTM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个预测太阳辐照度的深度关注驱动模型
准确预测太阳辐照度对于优化管理和设计光伏系统是必不可少的。它使光伏系统在智能电网中的有效集成成为可能。本文介绍了一种创新的深度关注驱动太阳辐照度预测模型。值得注意的是,通过将双向LSTM (BiLSTM)和注意机制的理想特征与VAE模型相结合,引入了一种扩展版本的变分自编码器(VAE)。具体地说,所引入的方法通过在VAE编码器端结合BiLSTM,使传统VAE能够建模时间依赖性,从而更好地提取和学习嵌入在太阳辐照度浓度测量上的时间依赖性。此外,自关注机制被嵌入到VAE的编码器侧,遵循BiLSTM来突出相关的特性。通过与递归神经网络(RNN)、门控递归单元(GRU)、LSTM和BiLSTM的比较,评估了该模型的性能。美国和土耳其的太阳辐照度测量值用于评估所研究的模型。结果证实了该模型在预测太阳辐照度方面优于其他模型(即RNN、GRU、LSTM和BiLSTM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Classification for Wind Turbine Benchmark Model Based on Hilbert-Huang Transformation and Support Vector Machine Strategies [INDIN 2021 Front cover] Synergetic Control of Fixed-wing UAVs in the Presence of Wind Disturbances From Face to Face to Hybrid Teaching: an Experience on Process Plant Automation Laboratory Course during Global Pandemic Towards Policy-based Task Self-Reallocation in Dynamic Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1