Testing for Signal-to-Noise Ratio in Linear Regression: A Test for Big Data Era

Jae H. Kim
{"title":"Testing for Signal-to-Noise Ratio in Linear Regression: A Test for Big Data Era","authors":"Jae H. Kim","doi":"10.2139/ssrn.3884683","DOIUrl":null,"url":null,"abstract":"This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression. It is particularly useful under a large or massive sample size, where a conventional test frequently rejects an economically negligible deviation from the null hypothesis. The test is conducted in the context of the traditional $F$-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"359 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3884683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a test for the signal-to-noise ratio applicable to a range of significance tests and model diagnostics in a linear regression. It is particularly useful under a large or massive sample size, where a conventional test frequently rejects an economically negligible deviation from the null hypothesis. The test is conducted in the context of the traditional $F$-test, with its critical values increasing with sample size. It maintains desirable size properties under a large or massive sample size, when the null hypothesis is violated by a practically negligible margin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性回归的信噪比测试:大数据时代的测试
本文提出了一种适用于一系列显著性检验和线性回归模型诊断的信噪比检验方法。它在大样本或大量样本量下特别有用,在这种情况下,传统检验经常拒绝经济上可以忽略不计的与原假设的偏差。该测试是在传统的$F -测试的背景下进行的,其临界值随着样本量的增加而增加。当零假设被几乎可以忽略的边际违反时,它在大或大量样本量下保持理想的大小特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1